
Read field from issues returned by JQL query or issue list

This function has been with the release. renamed JWT 3.0

Find the new documentation at:

Copy field values from multiple issues

On this page

Purpose
Example 1: Setting priority on current issue based on other issues priority
Example 2: Add new watchers into Epic based on assignees and reporters of its tasks and sub-tasks
Configuration Parameters
Usage Examples
Related Features

Purpose
This post-function is used for from issues selected by a or an expression. The values read are written into reading field values JQL Query Issue List
a field in current issue.

Example 1: Setting priority on current issue based on other issues priority
We are going to set current issue's Priority with the among issues in the and with as current issue, highest priority same project same issue type
which are also in and :statuses different from "Resolved" "Closed"

https://www.decadis.net/dev/doku/display/JWTSDC/JWT+expression+parser+-+the+basics
https://apps.decadis.net/display/JWTSDC/Copy+field+values+from+multiple+issues

JQL query used is: project = "%{00018}" AND issuetype = "%{00014}" AND status NOT IN (Closed, Resolved)

Note that:

%{00018} is field code for " "Project issue key
%{00014} is field code for " "Issue type

Once configured, your post-function will look like this:

Example 2: Add new watchers into Epic based on assignees and reporters
of its tasks and sub-tasks
We want to add as new watcher into issue the or of its and using the following logic:Epic reporter assignee task sub-tasks

Reporter will be added as watcher if is in role , otherwise the will be added.Administrators Assignee
In order to implement this logic we use as source value the following :text expression

, where is field code for , and isInRole(^%{00006}, "Administrators") ? ^%{00006} : ^%{00003} %{00006} Reporter %
 the one for {00003} Assignee

Only and with earlier than , or with than will be selected.tasks sub-tasks due date epic's due date higher priority epic's priority
In order to implement the issue selection we use the following expression:issue list

,filterByPredicate(subtasks() UNION linkedIssues("is Epic of"), ^{00017} < {00017} OR ^{00012} < {00012})
where is code for numeric value of , and the one for . Note that highest priority is {00017} Priority {00012} Due date 0
This post-function will be executed only if current issue is an . This way we can use this post-function in a workflow shared with other Epic
issue types.

The configuration for the described post-function is:

Text to be parsed is:

isInRole(^%{Reporter}, "Administrators") ? ^%{Reporter} : ^%{Assignee}

filterByPredicate(subtasks() UNION linkedIssues("is Epic of"), ^{00017} < {00017} OR ^{00012} < {00012})

Once configured, your post-function will look like this:

Configuration Parameters

Source Value

There are 3 types of source values available:

Field in selected issues: the value of a field in JQL or Issue List selected issues
Parsed text (mode): a string expression where we can use values of fields in current issue (syntax), and in selected advanced %{nnnnn}
issues (syntax). We can use all the functions available in the ^%{nnnnn} Expression Parser
Math or expression: an expression returning a numeric value where we can use values of fields in current issue (syntax),Date-Time {nnnnn}
and in selected issues (syntax). We can use all the functions available in the ^{nnnnn} Expression Parser

Special Operations depending on Source Field Type

Date and fields:Date-Time
Lowest Date: earliest date among those read.
Highest Date: latest date among those read.

Number fields:
Sum of Values: sum of all the values read.
Lowest Value: minimum value among those read.
Highest Value: maximum value among those read.
Average Value: arithmetic mean of values read.

Priority field:
Highest Priority
Lowest Priority

Issue Selection Modes

There are 2 different modes for selecting the issues whose field values are going to be read: and expression.JQL query Issue List

JQL Query

In this issue selection mode we use JQL, which is a language provided by Jira for doing .advanced issue searching

You can insert field codes with format in your JQL query. These field codes will be replaced with the values of the corresponding fields in %{nnnnn}
current issue at execution time, and the resulting JQL query will be processed by Jira JQL Parser. This way you can write dynamic JQL queries that
depend on values of fields of current issue.
Example: will return issues in same project and with same issue type as current issue.issuetype = "%{00014}" AND project = "%{00018}"

When you write your JQL for selecting the issues, take into account the following advices:

If field values are expected to have or , you should write field code (doubwhite spaces JQL reserved words or characters between quotes
le or simple). Example: will return issues with current user's full name. As full name can contain spaces, we have summary ~ "%{00021}"
written the field code between double quotes.
In general we will write field codes between quotation marks, since in most cases it doesn't hurt and it's useful for coping with field values
containing white spaces or reserved JQL words. Anyway, there is an exception to this general rule: when our field contains a comma

, and we want to use it with JQL operator . In those cases we will not write the field code between quotes, since separated list of values IN

https://apps.decadis.net/display/JWT/Expression+Parser
https://apps.decadis.net/display/JWT/Expression+Parser
https://confluence.atlassian.com/display/JIRA/Advanced+Searching

we want the content of the field to be processed as a , not as a single string value.list of values

Example: Let's assume that " " (field code) contains a comma separate list of issue keys like Ephemeral string 1 %{00061} "CRM-1, HR-2,
. JQL Query will be rendered in runtime like , which is HR-3" issuekey in ("%{00061}") issuekey in ("CRM-1, HR-2, HR-3")

syntactically incorrect. On the other hand, JQL Query will be rendered in runtime like issuekey in (%{00061}) issuekey in (CRM-1, HR-
, which is correct.2, HR-3)

Disabling JQL Syntax Pre-Checking

When we enter our JQL query, a syntax pre-checking is carried out in order to verify that it's correctly written. But when we insert field codes in our
JQL query, the definitive form of the query that will be executed is unknown, since it depends on the actual values of the fields in runtime. In these
cases the syntax pre-checking is done with speculative values given to the fields, and it might happen that fake syntax errors are reported.

In order to inhibit the JQL syntax pre-checking you should enter at the beginning of the line. Those characters will be removed in the actual JQL //
query that will be executed.

Example:

Issue List expression

In this issue selection mode we use an according to the . Here you can find issue list expression Expression Parser Examples of Issue List
.expressions

Additional Options:

Don't overwrite target field if it's already set: when checked, this parameter will make the post-function do nothing in case target field is
not empty in current issue.
Run as: Jira user post-function is going to be executed as. This parameter can be set to a (e.g. "john.nash"), or to a (e.fixed user user field
g. "Reporter", "Assignee", etc). This parameter is particularly important in this feature since JQL query will return issues according to the
browse permission this user has in the different project of the instance of Jira.

Usage Examples
 Page: Use field value as a key for referencing an issue in different

project and reading field values in referenced issue

Related Features
Update issue fields
Write field on linked issues or sub-tasks
Read fields from linked issues or sub-tasks

https://apps.decadis.net/display/JWT/Expression+Parser
https://apps.decadis.net/display/JWT/Examples+of+Issue+List+expressions
https://apps.decadis.net/display/JWT/Examples+of+Issue+List+expressions
https://apps.decadis.net/display/JWT/Use+field+value+as+a+key+for+referencing+an+issue+in+different+project+and+reading+field+values+in+referenced+issue
https://apps.decadis.net/display/JWT/Use+field+value+as+a+key+for+referencing+an+issue+in+different+project+and+reading+field+values+in+referenced+issue
https://apps.decadis.net/display/JWT/Update+issue+fields
https://apps.decadis.net/display/JWT/Write+field+on+linked+issues+or+sub-tasks
https://apps.decadis.net/display/JWT/Read+fields+from+linked+issues+or+sub-tasks

	Read field from issues returned by JQL query or issue list

