Read field from issues returned by JQL query or issue list

This function has been renamed with the JWT 3.0 release.
Find the new documentation at:

Copy field values from multiple issues

On this page

Purpose

Example 1: Setting priority on current issue based on other issues priority

Example 2: Add new watchers into Epic based on assignees and reporters of its tasks and sub-tasks
Configuration Parameters

Usage Examples

Related Features

Purpose

This post-function is used for reading field values from issues selected by a JQL Query or an Issue List expression. The values read are written into
a field in current issue.

Example 1: Setting priority on current issue based on other issues priority

We are going to set current issue's Priority with the highest priority among issues in the same project and with same issue type as current issue,
which are also in statuses different from "Resolved" and "Closed":

https://www.decadis.net/dev/doku/display/JWTSDC/JWT+expression+parser+-+the+basics
https://apps.decadis.net/display/JWTSDC/Copy+field+values+from+multiple+issues

Salect the targel fizids Mat will be s2t and
ihe source values for each of them.

Issue Selection:

Iesues whose flelds are going to be read.

Additional options:

Conditional execution:

l:lpIIDI'Ial boolaan expr&aslm fthat should be
sailsfled In grder 1o actually execute the post-
Tuncion.

(Syntax Speciication)

Run as:

Cumentuser -

Target fields and Source values: (7) Target field;

Summary - [Text] - m

Add a feld to be eet In current IsEUs.

Target Field Type of Value Source Value Calculated Don't Actions
Value Overwrite
Pricrity Standard Highest Edit
Remove

Issue Selection Mode:

= JQL Query lz=sue List ATz

1 project = "H{88818}" AND issustype = "E{88814}" AND status NOT IN (Closed, Resolved)
String Field Code Injector: Numeric/Date Field Code Injector:

Check Syntax
Surmmary - [Text] - %{00000} - Criginal estimate (minutes) - [Number] - {00063} -

- Field codes with format #{nnnnn} may be insered in the JQL Query, and will be replaced with field values at
runtime. Mozt times it's a good idea to write field codes between double quotes {e.g. "%E{ea2e1}"), since field
values may contain blank spaces that will produce JQL parsing errors at runtime.

- Cascading Select fields and Multi-level Cascading Select fields specific levels can be referenced with X
{nnnnn.a} for parent level, ¥{nnnnn. 1} for child level, etc.

Update issue immediately after fickd writing. A specific entry will be created in issue history for this field writing.

Leava Me Naid emply far axacuting tha past-luncion uncandiionally. Coliection of Examples [Line 1/ Cal1]

Logleal connectives: and, or and not. Alzmatively you can alsa use &, | and !
Comeaisan gReriarg: =, =, =, »=, < And «=. Op2EOrs in, nat in, any in, none in, ~ 3nd !~ 230 be wsad wih sinngs, muit-
vaked Rekds and s,

Loolca] arale: true and false. Leral null I used with = and != ko check whether 3 field Is Infiglized, =.§. {eee12} != null
chacks whather Dus Date ks Initialized.

Check Syntax

String Field Code Injector: Mumeric/Date Figld Code Injector:
Summary - [Text] - %{00000F - Original estimate (minutes) - [Mumber] - {00068} -

Selact the wsar that will b2 used to exscute this f2ature. JIra will 3pply resticlions according to the permisslans, praject rales and groups of the selected user.

Usar defined by a fleld. Input 3 spacific user.

JQL query used is: proj ect = "% 00018}" AND issuetype = "% 00014}" AND status NOT IN (C osed, Resol ved)

Note that:

® 9%{00018} is field code for "Project issue key"
* 9%{00014} is field code for "Issue type"

Once configured, your post-function will look like this:

Triggers (0 Conditions (0 Validators ' 0 Post Functions ' 6

The following will be processed after the transition occurs Add post function

1. Highest priority of fields Priority in issues returned by JQL guery project = "%{Project
key}" AND issuetype = "%{Issue type}" AND status NOT IN (Closed,
Resolved) will be copied to field Priority in current issue.

This feature will be run as user in field Current user.

Example 2: Add new watchers into Epic based on assignees and reporters
of its tasks and sub-tasks

We want to add as new watcher into Epic issue the reporter or assignee of its task and sub-tasks using the following logic:

® Reporter will be added as watcher if is in role Administrators, otherwise the Assignee will be added.
In order to implement this logic we use as source value the following text expression:
i sl nRol e(~9% 00006}, "Administrators") ? "% 00006} : "% 00003}, where %{00006} is field code for Reporter, and %
{00003} the one for Assignee

® Only tasks and sub-tasks with due date earlier than epic's due date, or with higher priority than epic's priority will be selected.
In order to implement the issue selection we use the following issue list expression:
filterByPredicate(subtasks() UNION |inkedlssues("is Epic of"), ~{00017} < {00017} OR ~{00012} < {00012}),
where {00017} is code for numeric value of Priority, and {00012} the one for Due date. Note that highest priority is 0

® This post-function will be executed only if current issue is an Epic. This way we can use this post-function in a workflow shared with other
issue types.

The configuration for the described post-function is:

Salect the targel fizids Mat will be s2t and
ihe source values for each of them.

Issue Selection:

Iesues whose flelds are going to be read.

Additional options:

Conditicnal execution:

l:lplfrDI'Ial boolaan Ek‘pl‘BE-EIm fthat should be
sailsfled In grder 1o actually execute the post-
Tunction.

[Syntax Speciication)

Run as:

Cumentuser -

Target fields and Source values: (7) Target fisld:

Summary - [Text] - m

Add a feld to be eet In current IsEUs.

Target Field Type of Value Source Value Calculated Don't Actions
Value Overwrite
Mew watchers Parsed text izInrole(~%{Reporter}, Edit
{advanced "administrators™) ? ~%
made) {Reporter} : ~¥{assignes} Remove
Issue Selection Mode:
®)3l Query Issue List IATENEDEE

1 project = "H{88818}" AND issustype = "E{88814}" AND status MOT IN (Closed, Resolved)

String Field Code Injector: Numeric/Date Field Code Injector: Check Syntax
Summary - [Text] - %{D00300} - Original estimate (minutes) - Mumber] - {00068} -

- Field codes with format Z{nnnnn} may be insered in the JQL Query, and will be replaced with field values at
runtime. Mozt times it's a good idea to write field codes between double quotes {e.g. "%{eeee1}"), since field
values may contain blank spaces that will produce JQL parsing errors at runtime.

- Cazcading Select fields and Multi-level Cascading Select fields specific levels can be referenced with X
{nnnnn.a} for parent level, ¥{annnn. 1} for child level, etc.

Update issue immediately after fiskd writing. A specific entry will be created in issue history for this field writing.

1 %{esa1a} = "Epic”

Leava e faid emply for axaculing the post-luncion uncandiionally. Collection of Examplea [Linz 1/ Cal13]

Loglcal connectives: and, or 3nd not. Allzmatively you can ko usz &, | and !

Comeaisan gReriarg: =, =, =, »=, < And «=. Op2EOrs in, nat in, any in, none in, ~ 3nd !~ 230 be wsad wih sinngs, muit-
vakued fekds and Bsfs,

Check Syntax
Loglcal Barale: true and false. Literal null 1§ used wiih = and != lo check whelher 3 field Iz Infilalized, e.g. {eee12} != null
chacks whather Dus Date ks Inlalized.
String Field Code Injector: Mumeric/Date Field Code Injector;
Summary - [Texd] - %{00000; - Crriginal estimate (minutes) - [Mumber] - {00058} -

Selact the wsar that will b2 used to exscute this f2ature. JIra will 3pply resticlions according to the permisslans, praject rales and groups of the selected user.

Ugar genned by 3 fleld. INpUL 3 BpaCINc UBEr.

Text to be parsed is:

i sInRol e("% Reporter},

"Adm ni strators") ? "% Reporter} : "% Assignee}

filterByPredicate(subtasks() UNION Iinkedl ssues("is Epic of"), {00017} < {00017} OR {00012} < {00012})

Once configured, your post-function will look like this:

Triggers (0 Conditions ' 0 Validators ' 0 Post Functions ' 7

The following will be processed after the transition occurs Add post function

1. Text parsed in advanced mode isInRole (*%{Reporter}, "Administrators") ? %
{Reporter} : “%{Assignee} inissues returned by Issue List expression
filterByPredicate (subtasks () UNION linkedIssues("is Epic of"), “{Priority} <
{Priority} OR “{Due date} < {Due date}) will be copied to field New watchers in current issue.
Post-function will only be executed if the following boolean expression is satisfied: ${Issue type} = "Epic"
This feature will be run as user in field Current user.

Configuration Parameters

Source Value

There are 3 types of source values available:

® Field in selected issues: the value of a field in JQL or Issue List selected issues

® Parsed text (advanced mode): a string expression where we can use values of fields in current issue (syntax %{nnnnn}), and in selected
issues (syntax *%{nnnnn}). We can use all the functions available in the Expression Parser

® Math or Date-Time expression: an expression returning a numeric value where we can use values of fields in current issue (syntax {nnnnn}),
and in selected issues (syntax *{nnnnn}). We can use all the functions available in the Expression Parser

Special Operations depending on Source Field Type

® Date and Date-Time fields:
© Lowest Date: earliest date among those read.
© Highest Date: latest date among those read.

® Number fields:
o Sum of Values: sum of all the values read.
o Lowest Value: minimum value among those read.
© Highest Value: maximum value among those read.
© Average Value: arithmetic mean of values read.

® Priority field:
© Highest Priority
O Lowest Priority

Issue Selection Modes

There are 2 different modes for selecting the issues whose field values are going to be read: JQL query and Issue List expression.

JOL Query
In this issue selection mode we use JQL, which is a language provided by Jira for doing advanced issue searching.

You can insert field codes with format %{nnnnn} in your JQL query. These field codes will be replaced with the values of the corresponding fields in
current issue at execution time, and the resulting JQL query will be processed by Jira JQL Parser. This way you can write dynamic JQL queries that
depend on values of fields of current issue.

Example: i ssuetype = "% 00014}" AND project = "% 00018}" will return issues in same project and with same issue type as current issue.

When you write your JQL for selecting the issues, take into account the following advices:

® |[f field values are expected to have white spaces or JQL reserved words or characters, you should write field code between quotes (doub
le or simple). Example: sunmary ~ "% 00021} " will return issues with current user's full name. As full name can contain spaces, we have
written the field code between double quotes.

® |n general we will write field codes between quotation marks, since in most cases it doesn't hurt and it's useful for coping with field values
containing white spaces or reserved JQL words. Anyway, there is an exception to this general rule: when our field contains a comma
separated list of values, and we want to use it with JQL operator IN. In those cases we will not write the field code between quotes, since

https://apps.decadis.net/display/JWT/Expression+Parser
https://apps.decadis.net/display/JWT/Expression+Parser
https://confluence.atlassian.com/display/JIRA/Advanced+Searching

we want the content of the field to be processed as a list of values, not as a single string value.

Example: Let's assume that "Ephemeral string 1" (field code %{00061}) contains a comma separate list of issue keys like "CRM-1, HR-2,
HR-3". JQL Query i ssuekey in ("% 00061}") will be rendered in runtime like issuekey in ("CRM-1, HR-2, HR-3"), which is
syntactically incorrect. On the other hand, JQL Query i ssuekey in (% 00061}) will be rendered in runtime like issuekey in (CRM-1, HR-

2, HR-3), which is correct.

Disabling JQL Syntax Pre-Checking

When we enter our JQL query, a syntax pre-checking is carried out in order to verify that it's correctly written. But when we insert field codes in our
JQL query, the definitive form of the query that will be executed is unknown, since it depends on the actual values of the fields in runtime. In these
cases the syntax pre-checking is done with speculative values given to the fields, and it might happen that fake syntax errors are reported.

In order to inhibit the JQL syntax pre-checking you should enter / / at the beginning of the line. Those characters will be removed in the actual JQL

query that will be executed.

Example:

JAQL Query: // issuekey = %{00061}

[Line 1/ Col 24]

Issue List expression

In this issue selection mode we use an issue list expression according to the Expression Parser. Here you can find Examples of Issue List

expressions.

Additional Options:

* Don't overwrite target field if it's already set: when checked, this parameter will make the post-function do nothing in case target field is

not empty in current issue.

® Run as: Jira user post-function is going to be executed as. This parameter can be set to a fixed user (e.g. "john.nash"), or to a user field (e.
g. "Reporter”, "Assignee”, etc). This parameter is particularly important in this feature since JQL query will return issues according to the
browse permission this user has in the different project of the instance of Jira.

Usage Examples

Page: Use field value as a key for referencing an issue in different
project and reading field values in referenced issue

Related Features

® Update issue fields
® Write field on linked issues or sub-tasks
® Read fields from linked issues or sub-tasks

https://apps.decadis.net/display/JWT/Expression+Parser
https://apps.decadis.net/display/JWT/Examples+of+Issue+List+expressions
https://apps.decadis.net/display/JWT/Examples+of+Issue+List+expressions
https://apps.decadis.net/display/JWT/Use+field+value+as+a+key+for+referencing+an+issue+in+different+project+and+reading+field+values+in+referenced+issue
https://apps.decadis.net/display/JWT/Use+field+value+as+a+key+for+referencing+an+issue+in+different+project+and+reading+field+values+in+referenced+issue
https://apps.decadis.net/display/JWT/Update+issue+fields
https://apps.decadis.net/display/JWT/Write+field+on+linked+issues+or+sub-tasks
https://apps.decadis.net/display/JWT/Read+fields+from+linked+issues+or+sub-tasks

	Read field from issues returned by JQL query or issue list

