Expression parser 201 - All functions

Data types

General Information

Throughout the documentation we refer to data types that can be used in the expression parser and its

functions.

The most commonly use data types are listed below.

@ Most functions will accept string values so casting values to string is a very powerful function
. Details can be found below in the converting data types section!
Additionally you can directly transform a field value to text using the following syntax: %{...

anyfield}

Data type

Comparison operators return a logical

value true or false , as well as some
functions.

Description

NUMBER This type represents numeric values, and

is also used to store Date, Time and Date-

Time (DATE_TIME) values. When

storing any temporal value, the number
represents the milliseconds elapsed
since January 1, 1970, 00:00:00 GMT.
Number or Date-Time fields can be

referenced as numbers using the following

notation: {...somefield}.

This type represents any kind of text or
character string including all kinds of
select and multi-select fields

MULTI

STRING

Any field type or data type is
susceptible of being
transformed to text, so any
field can be referenced as a
text-string value using the
following notation: %f...
anyfield}, and %({...anyfield.i}
for Cascading Select or Multi-
Cascading Select fields, where i
is the index that represents the
level to be accessed. (i =0 is
used for base level).

This type represents a collection of
numeric values returned by various
functions. The size may vary from 0 to
any number of numeric values. It is used
to read the value of a numeric field in a
selection of issues. You can also use
literals like [1, 2, 3].

NUMBER []

This type represents a collection of string
values returned by various functions.
The size may vary from 0 to any number
of string values. It is also used to read the
value of a string field in a selection of
issues. You can also use literals like [" st
ring_A", "string_B",
"string_C'].

STRING []

Example

isActive(string user_name)

1, 1.1, -1.1, .1, -.1
"Hello world"
fieldvalue(), append(),
union(), except(),
intersect() and
distinct(),

[1, 2, 3]

fiel dval ue(), append(),
uni on(), except(),
intersect() and
distinct(),

["string_A", "string_B",
"string_C']

On this page

® Data types

® Operators

® Boolean expressions

® Numbers, dates and times

® Strings

® |[ssue lists

® Number lists

® String lists

® List operators

® Selectable fields

® Users, groups and roles

® \Versions

® Historical field values

® Miscellaneous

® Functions to temporarily
store and retrieve values

ISSUE []

This type represents a collection of
issues. The size may vary from 0 to any
number of issues.

It's returned by issue selection or filtering
functions like subtasks(), linkedIssues(),
filterBylssueType(), distinct(), etc.

subt asks(),
I'i nkedl ssues(),

transitionLi nkedl ssues(),

filterByFiel dval ue(),
filterByStatus(),
filterByl ssueType(),
filterByResol ution(),
filterByProject(),
append(), union(),
except (), intersect()
di stinct()

and

Converting data types

There are multiple functions available for converting or casting data types. A comprehensive list can be

found below.

Function Input Output
toString(n NUMBER Returns a STRING with the
umber n) decimal representation of the numeric
DATE_TIME value in n. Numeric value of a Date-Time
field is number of milliseconds elapsed
since January 1, 1970, 00:00:00 GMT.
Example: t oSt ri ng(3. 141592)
returns " 3. 141592" .
toString(n NUMBER Returns a STRING with the
umber n, decimal representation of the numeric
number de value in n limiting the fractional part to
cimals) the number of digits in parameter decima
Is.
Example: toString(3.141592, 2)
returns " 3. 14" .
toString(n NUMBER [Returns a STRING with a
umber list 1) comma separated list of decimal
representation of the numeric values in .
Example:toString([1, 2, 3,
4.0]) returns"1, 2, 3, 4".
toString(n NUMBER [Returns a STRING with a
umber list |, comma separated list of decimal
number de representations of the numeric values in I,
cimals) with the number of characters in the
decimal part specified by parameter deci
mals.
Example: toString([1. 123,
2.452, 3.64612], 2) returnsthe
following string: " 1. 12, 2.45, 3.65".
toString(n NUMBER [] Returns a STRING with a list
umber list |, of decimal representations of the numeric
number de values in |, with the number of characters
cimals, in the decimal part specified by
string sepa parameter decimals and separated by
rator) string separator.
Example: t oString([1. 123,
2.452, 3.64612], 2, " : ")
returns the following string: " 1. 12 :
2.45 : 3.65" .
toString(st STRING [] Returns a STRING with a
ring list I)

comma separated list of string values in |.

Example:toString(["Hello", "
", "world", "!"]) returns"Hell o,

, world, !".

toString(st STRING []

ring list I,

string sepa

rator)

toString(is ISSUE []

sue list)

toString(is ISSUE []

sue list I,

string sepa

rator)

toNumber(STRING

string s)

tolnteger(s STRING

tring s,

string radix)

toStr?ngLi STRING with a list of tokens

SH(String S, ' separated by one or more characters

string sepa

rators)

toStringLi ' field code for a MULTI -value

st(multi- field in format %f{...somefield}. Multi-valued

valued fields are Multi Select, Checkboxes,

field field) ' components, Versions, Multi User Picker,
Multi Group Picker, Issue Pickers,
Attachments and Labels.

toNumber STRING with a list of numbers

List(string s | i decimal representation separated by one

» String Sep | or more characters

arators)

Returns a a list of

string values in | separated by string sepa
rator.

STRING

Example: t oSt ri ng(["bl ue",

"red", "green"], "; ") returns"bl
ue; red; green".
Returns a STRING with a

comma separated list of issue keys.

Example: t oSt ri ng(subt asks())
returns "CRM 5, CRM 6", being CRM-5
and CRM-6 the keys of current issue's su
b-tasks.

Returns a with a list

of issue keys separated by string separat
or.

STRING

Example: t oSt ri ng(subt asks(),
") returns "CRM 5 CRM 6", being CRM-5
and CRM-6 the keys of current issue's su
b-tasks.

Returns the

represented by the string s. This function
expects a decimal representation of a
number. In case it is not possible to
parse the s to number, null is returned.

NUMBER

Example: t oNurrber (" 3. 14") returns 3
.14,

Returns the
represented by the string s as a signed
integer in the radix specified by argument
radix.

NUMBER

Example: t ol nt eger ("ff", 16)
returns 255 .

Returns a STRING [] with
tokens in argument s separated by
characters in argument separators.
Leading and trailing spaces around each
token are automatically removed.

Example: t oStri ngLi st ("red,

orange, yellow, green; blue;
purple", ",;") returns the following
string list: ["red", "orange",

"yell ow', "green", "blue",
"purple"] .

Returns a STRING []

representing each of the values selected
in the field.

Example: toStri ngLi st (%. ..
conponent s}) returns a list of strings
with each of the components selected in
current issue.

This function expects in argument s a

string containing numbers in decimal

representation separated by characters

in argument separators, and returns a
NUMBER []

Example: t oNunber Li st ("1, 3, 5;
7, 11; 13", ",;") returnsthe
following number list: [1, 3, 5, 7,
11, 13] .

issueKeys
TolssueLi
st(string is
sue_keys)

STRING

with a comma Returns an ISSUE [] with all

separated list of issue keys issues with keys in argument issue_keys

. Argument issue_keys is a string
containing a comma separated list of
issue keys.

Example: i ssueKeysTol ssueli st
("CRM 12, HT-254") returns an issue
list with issues with keys CRM-12 and HT
-254.

@ Automatic casting from Number to Text-String

Whenever you write a numeric term at the right-hand side of concat operator + or a comparis
on operator like =, and the left-hand side is occupied by a text-string term, the parser will
automatically transform the right-hand side term into a string

® +(string concat):"H s age is

+ 30isequivalentto"Hi s age is " +

toString(30)

(30)

Operators

® = (any comparison operator): "30" = 30 is equivalentto " 30" = toString

General Information

The expression parser accepts the most common operators. The operators listed below are available for
the following data types:

Numbers
Strings
Issue lists
Number lists
String lists

@ Operators = and != are also available for type

Case-sensitive operators

Operator

Meaning

equal to

not equal
to

Examples (all examples return tr ue)

1 =1

"HELLO' = toUpper Case("Hell o")

% ...description} = {...timeoriginalestinate} ,auto-
casting numeric field {...originalEstimate} to Text-String.

% ...original Estimate} = toString({...

ori gi nal Esti mat e}) , explicit casting of numeric field {...
originalEstimate} to Text-String.

true = true

% ...cf10001} = null ,for checking whether field with code %({...
¢f10001} is not initialized.

[1, 2, 3] =1[1, 2, 3] ,when used with lists elements existence
and its order are evaluated.

["blue", "red", "green"] = ["blue", "red", "green"]
0'!=1

"HELLO'" != "Hell 0"

% ...description} !'= "Hello"

true !'= fal se

{...cf10010} != null ,for checking whether the numeric field with
code {...cf10010} is initialized.

[1, 2, 3] '=1[1, 3, 2] ,when used with lists elements existence

and its order are evaluated.
["blue", "red", "green"] != ["blue", "green", "red"]

https://apps.decadis.net/display/AUTOMATION/Data+types
https://apps.decadis.net/display/AUTOMATION/Numbers%2C+Dates+and+Times
https://apps.decadis.net/display/AUTOMATION/Strings
https://apps.decadis.net/display/AUTOMATION/Issue+lists
https://apps.decadis.net/display/AUTOMATION/Number+lists
https://apps.decadis.net/display/AUTOMATION/String+lists

not in

any in

none in

lower than

greater
than

less than
or equal to

greater
than or
equal to

contains

doesn't
contain

is
contained
in

isn't
contained
in

some
element is
in

no single
element is
in

1 <2
"abc" < "bbc"
"abc" < "abcd"

2 >1
"bbc" > "abc"
"abcd" > "abc"

"Hello world!" ~ "world" ,checks whether a string contains a
substring.

% ...conponent Leads} ~ %...currentUser} ,checks whether"C
omponent leaders" contains "Current user".

| i nkedl ssues() ~ subtasks() , checks whether all sub-tasks are
also linked to current issue.

[1, 2, 3, 2, 2, 4 ~[2, 1, 2] ,when used with lists
cardinalities must match.

["blue", "red", "green", "red", "white", "red"] ~
["red", "green", "red"]

(["green", "red"] ~ ["red", "green", "red"]) = false
"world" !~ "Hello world!"

% ...fixVersions} !~ %...versions} ,checks whether "Fix
version/s" doesn't contain all versions in "Affects version/s".
fieldvalue(%...reporter}, linkedlssues()) !~

fieldvalue(%...reporter}, subtasks()) ,checks whether
linked issues reporters don't include all sub-tasks reporters.

[1, 2, 3, 2, 2, 4 !~ [2, 1, 1, 4] ,when used with lists
cardinalities must match.

["blue", "red", "green", "red", "red"] !~ ["red",
"green", "green", "red"]

"world" in "Hello world!" ,tocheck whether a substring is
contained in a string.

% ...currentUser} in %...conponentLeads} , checks whether"
Current user" is contained in "Component leaders".

subt asks() in |inkedlssues() , checks whether all sub-tasks are
also linked to current issue.

[1, 1, 2] in[2, 1, 1, 1, 4], cardinality must match.
["blue", "red", "red"] in ["red", "green", "blue",
"red", "red"] , cardinality must match.

2in[1, 2, 3]

"blue" in ["red, "blue", "white"]

"Hello world!" not in "world"

% ...versions} not in %...fixVersions} ,checks whether not
all versions in "Affects version/s" are contained in "Fix version/s".
fieldvalue(%...reporter}, subtasks()) not in
fieldvalue(%...reporter}, |inkedlssues()) ,checkswhether
not all sub-tasks reporters are included in linked issues reporters.

[1, 1, 2, 2] not in[2, 1, 1, 1, 4], cardinality must match.

["blue", "red", "red", "blue"] not in ["red", "blue",
"red", "red"] , cardinality must match.

5not in[1, 2, 3, 3, 4]

"orange" not in ["blue", "red", "white"]

% ...versions} any in %...fixVersions} ,checks whether
any version in "Affects version/s" is contained in "Fix version/s".
fieldvalue(%...reporter}, subtasks()) any in
fieldvalue(%...reporter}, |inkedlssues()) ,checkswhether
any sub-task's reporter is present among linked issues reporters.

[1, 3] any in [3, 4, 5]

["blue", "white"] any in ["black", "white", "green"]

% ...versions} none in %...fixVersions} , checks whether
there isn't a single version "Affects version/s" in "Fix version/s".
fieldvalue(%...reporter}, subtasks()) none in

fieldval ue(%...reporter}, |inkedlssues()) ,checkswhether
there isn't a single sub-task reporter among linked issues reporters.

[1, 2] none in [3, 4, 5]

["blue", "red"] none in ["black", "white", "green"]

Case-ignoring Operators

The following comparison operators are applicable to STRING and STRING [] datat

ypes.

All operators ignore the case of the characters.

Operator
| =~

| ~~

in~

not in~
any in~
none
in~

Meaning

equal to

not equal
to

contains

doesn't
contain

is
contained
in

isn't
contained
in

some
element is
in

no single
element is
in

Examples (all examples return t r ue)

"HELLO' =~ "Hello"

"up" =~ "UP"

["blue", "red", "green"] =~ ["Blue", "RED', "Geen"]
" HELLO' !=~ "Hello"

"up" !=~ "down"

("up" =~ "UP") fal se

["blue", "red"] !=~ ["Blue", "green"]
["blue", "red"] !=~ ["Red", "BLUE"]

(["blue", "red", "green"] !=~ ["Blue", "RED',
"Green"]) = false

"Hello World!" ~~ "worl d" , checks whether a string contains a
substring.

"A small step for a man" ~~ "STEP" , checks whether a string
contains a substring.

["one", "two", "three"] ~~ ["TWD', "One"] ,checks whether
a string list contains all the elements of another string list.

"Hello World!" !~~ "bye" , checks whether a string doesn't contain
a substring.

"A snall step for a man" !~~ "big" , checks whether a string
doesn't contain a substring.

["one", "two", "three"] !~~ ["Four"] , checks whether a string
list doesn't contain one element of another string list.

(["one", "two", "three"] !'~~ ["TWD']) = false

"world" in~ "Hello World!" , checks whether a substring is
contained in another string.

"STEP" in~ "A small step for a man" , checks whether a
substring is contained in another string.

["TWO', "One"] in~ ["one", "two", "three"] ,checks whether
all the elements of a string list are contained in another string list.

"bye" not in~ "Hello World!" , checks whether a substring is not
contained in another string.

"big" not in~ "A snall step for a man" , checks whether a
substring is not contained in another string.

["Four"] not in~ ["one", "two", "three"] ,checks whether
any of the elements of a string list are not contained in another string list.
(["TWO'] not in~ ["one", "two", "three"]) = false

["blue", "violet"] any in~ ["Blue", "Red", "Geen"]
["Five", "One"] any in~ ["FOUR', "FIVE', "SIX']

["Orange"] any in~ ["red", "blue", "green"]
(["orange"] any in~ ["Red", "Orange"]) = false

Operators and applicable data types

Below you find a comprehensive matrix of all operators and applicable data types.

BOOLEAN NUMBER STRING NUMBER []

Comparison

Operator

X X X X X X
X X X X X X

STRING []

ISSUE

https://apps.decadis.net/display/AUTOMATION/Expression+parser+201+-+All+functions#Expressionparser201Allfunctions-types
https://apps.decadis.net/display/AUTOMATION/Expression+parser+201+-+All+functions#Expressionparser201Allfunctions-types

1~
in

not in
any in

none in

not in~
any in~

none in~

@ A reference of all data types can be found here.

Boolean expressions

Fixed

Remember
Operators ~, ! ~,

a string list

Operators ~, ! ~,

Operators ~, !~,

as contained list.

Operators = and ! =, when used for comparing lists, require to
have the same elements, with the same cardinality and the s

ame order.

Operators <, >,

values

X X X X

X X X X X X

i n can be used for checking
a single element (number or string) against a number list or

i n when used with a string a
re useful to look for substrings in another string.

i n respect cardinality, i.e.,
container list must have at least the same number of elements

<= and >= work according to lexicographical
order when comparing strings.

X X X X X X

Example

*1inJ[1, 2, 3]

["bl ue",
"red"] ~
"bl ue"

"l love

codi ng" ~

"l ove"

"I don't Iike
Mondays" !~
"Fridays"
"love" in "l

| ove codi ng"
"Fridays" not
in"l don't

i ke Mondays".

[1, 1] in [1,
1, 1]

[1, 1] not in
[1, 2, 3]

Pq
5

(CRCIIOND)

010w w

AUIRRCINCD)
=
I

X X X X X X X X X X X X X X

X X X X X X

#

Only two values will be accepted / returned: true and f al se.

Logical operators

The following logical operators can be used for linking logical terms in an expression, i.e., terms that
return a boolean value type (true or false).

Operator Meaning Precedence
NOT or ! logical negation 1 (highest)
ANDor & logical conjunction 2
OR or | logical disjunction 3
XOR exclusive or, i.e., a XOR b isequivalentto a AND 'b OR !a 3

AND b

| MPLI ES or logical implication, i.e., a | MPLI ES b is equivalentto 'a OR b 4
I MP

XNOR or EQV | logical equivalence, i.e., a EQV b is equivalentto a | MPLI ES 4 (lowest)
b AND b I MPLIES a

Logical connectives are case insensitive, i.e., they can also be written in lower case: or, and, not,
xor, inplies, inp, eqvand xnor.

Conditional operator: ? : (IF, THEN, ELSE)

The conditional operator ? : is a powerful operator to construct conditional expressions.
@ The conditional operator basically allows you to construct the following expression: IF boolean
_expression true THEN term_1 ELSE term_2.
The format to be used is: <boolean_expression> ? <term_1> : <term_2>

Both term_1 and term_2 need to be of the same data type (boolean, number, string, issue
list, string list or number list).

Examples of using the conditional operator

Expression Output
{...duedate} !'= null ? ({...duedate} If the Due Date is not nul | , this function will
- {...currentDateTine}) / {HOUR} : O return the number of hours from the current

date-time to Due Date, otherwise it will return 0

timePart ({...currentDateTinme}, LOCAL) If the current time is between 21:00 and 7:00

> 21:00 AND timePart({... this function will return "Ni ght ", otherwise it
current DateTine}, LOCAL) < 7:00 ? will return "Day".
“Night" : "Day"
Examples
Input Output
% ...sonefield} = "Yes" Tr ue if the value of the field is "Yes", otherwise Fal se.

% ...somefieldl} != null AND % True only if{...somefield1} field has a value and field {...
{...sonefield2} = null somefield2} does NOT have a value.

datePart ({...duedate}, LOCAL) Tr ue only if Due Date (field code {...duedate}) is later
> datePart({... than Current date (field code {...currentDateTime}) in
current Dat eTi me}, LOCAL) server's local timezone.

https://apps.decadis.net/display/AUTOMATION/Data+types

Numbers, dates and times

Fixed values

Input Format Example

Valid numerical values

e o o o o o
(&3]

Valid Date-time values | yyyy/MM/dd [hh:mm]or yyyy-MM-dd [hh:mm)]

2018/ 03/ 25 23: 15
2018-03-25 23:15
2018/ 03/ 25
2018-03- 25

Valid Time values hh:mm

Variable values (field values)

Numeric values of Number, Date, Date-Time and Priority data type fields can be inserted in
expressions with following notation {...somefield}, e.g., use {. . . duedat e} for Due Date, and {.. . .
nunber OF At t achment s} for Number of attachments.

@ Pro tip

For checking if a field is has a value you canuse { . . . sonefield} = null or{...
sonefield} !'= null

Math Functions

Function Input Returned value

abs(number x) NUMBER Returns the absolute value of x, i.e., if x>0 it returns X,
otherwise it returns -x.

acos(number x) NUMBER Returns the arc cosine of x; the returned angle is in
the range 0.0 through pi.

asin(number x) NUMBER Returns the arc sine of x; the returned angle is in the
range 0.0 through pi.

atan(number x) NUMBER Returns the arc tangent of x; the returned angle is in
the range 0.0 through pi.

ceil(number x) NUMBER Returns the smallest (closest to negative infinity)
value that is larger than or equal to x and is equal to a
mathematical integer.

cbrt(number x) NUMBER Returns the cube root of x.

cos(number x) NUMBER Returns the trigonometric cosine of angle x expressed
in radians.

cosh(number x) NUMBER Returns the hyperbolic cosine of x.

floor(number x) NUMBER Returns the largest (closest to positive infinity) value

that is less than or equal to x and is equal to a
mathematical integer.

https://apps.decadis.net/display/AUTOMATION/Data+types

log(number x)
log10(number x)

max(number X,
number y)

min(number x,
number y)

modulus(number divi
dend, number divisor)

pow(number X,
number y)

random()

remainder(number div
idend, number divisor)

round(number x)

sin(number x)

sinh(number x)
sqgrt(number x)

tan(number x)

tanh(number x)

toDegrees(number x)

toRadians(number x)

Date-Time Functions

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

Returns the natural logarithm (base e) of x.
Returns the base 10 logarithm of x.

Returns the larger of two numeric values.

Returns the smaller of two numeric values.

Returns di vi dend - (divisor * floor
(dividend / divisor))

Returns x raised to the power y.

Returns a value with a positive sign, greater than or

equal to 0.0 and less than 1.0.

Returns di vi dend - divisor * n,wherenis
the closest integer to di vi dend / di vi sor .

Returns the closest integer to x.

Returns the trigonometric sine of angle x expressed
in radians.

Returns the hyperbolic sine of x.
Returns the square root of x.

Returns the trigonometric tangent of angle x expresse
d in radians.

Returns the hyperbolic tangent of x.

Converts an angle x measured in radians to an
approximately equivalent angle measured in degrees.

Converts an angle x measured in degrees to an
approximately equivalent angle measured in radians.

Fields of type Date and Date-Time contain a numeric value with the milliseconds elapsed since
January 1, 1970, 00:00:00 GMT. We usually need to get significative numbers from this numeric value,
like YEAR, MONTH, DAY, HOUR, MINUTE, etc.

To achieve this, Automation Toolbox for Jira provides a comprehensive set of functions, most of them
with TIMEZONE as input argument, since any significative number relative to a timestamp depends on

the timezone.

Function

timePart(number t,
timeZone time_zone

)

datePart(number t,
timeZone time_zone

)

TIMEZONE

TIMEZONE

Returned value

Returns the time part of timestamp represented by
numeric value t in time_zone time zone.

Example: for timestamp March, 25th 2011 23:15 this
function returns a NUMBER representing time

23:15 in milliseconds

Returns the date part of timestamp represented by
numeric value t in time_zone time zone.

Example: for timestamp March, 25th 2011 23:15 this
function returns a NUMBER representing date

March, 25th 2011 00:00 in milliseconds

second(number t,
timeZone time_zone

)

minute(number t,
timeZone time_zone

)

hour(number t,
timeZone time_zone

)

dayOfTheWeek(nu
mber t, timeZone ti
me_zone)

dayOfTheMonth(nu
mber t, timeZone ti
me_zone)

month(number t,
timeZone time_zone

)

year(number t,
timeZone time_zone

)

addDays (number t
, number n,
timeZone time_zon
e)

addMonths(number
t, number n,
timeZone time_zone

)

TIMEZONE

TIMEZONE

TIMEZONE

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

Returns the seconds figure of timestamp represented by
numeric value t in time_zone time zone.

Example: for timestamp March, 25th 2011 23:15:30 this
function returns a NUMBER representing 30

seconds in milliseconds.

Returns the minutes figure of timestamp represented by
numeric value t in time_zone time zone.

Example: for timestamp March, 25th 2011 23:15:30 this
function returns a NUMBER representing 15

minutes in milliseconds.

Returns the hours figure of timestamp represented by
numeric value t in time_zone time zone.

Example: for timestamp March, 25th 2011 23:15:30 this
function returns a NUMBER representing 23

hours in milliseconds.

Returns the day of the week of timestamp represented
by numeric value t in time_zone time zone, with Sunday
=1, Monday = 2, ... Saturday = 7.

Example: for timestamp March, 25th 2011 23:15 this
function returns 6 for Friday as a NUMBER ,

represented also by macro { FRI DAY} .

Returns the day of the month of timestamp represented
by numeric value t in time_zone time zone.

Example: for timestamp March, 25th 2011 23:15 this
function returns 25 as a NUMBER

Returns the month of a timestamp represented by
numeric value t in a certain time zone, with January = 1,
February = 2, ... December = 12.

Example: for timestamp March, 25th 2011 23:15 this
function returns 3 for March as a NUMBER ,

represented also by macro { MARCH} .

Returns the year of a timestamp represented by numeric
value t in a certain time zone.

Example: for timestamp March, 25th 2011 23:15 this
function returns 2011 as a NUMBER

Returns a timestamp as a NUMBER resultant

of adding n days to timestamp t. You should use this
function instead of simply adding n * { DAY} , since {
DAY} is a macro equivalentto 24 * {HOUR} , not
taking into account that once in a year we have a day
with 25 or 23 hours due to DST transition. Negative
values for n are used in order to subtract instead of
adding.

Example: addDays(2018/03/27 01: 00, -2,
LOCAL) returns 2018/03/25 01:00 .

Returns a timestamp resultant of adding n months to
timestamp t. You should use this function instead of
simply addingn * { MONTH} , since { MONTH} is a
macro equivalentto 30 * { DAY} , not taking into
account that some months has more or less than 30
days. Negative values for n are used in order to subtract
instead of adding.

Example: for timestamp t with value March, 25th 2011
23:15 calling to addMont hs(t, 3, LOCAL) will return
a timestamp as a NUMBER with value June,

25th 2011 23:15

addYears(number t,
number n,
timeZone time_zone

)

addTimeSkipping
Weekends(number t
, number timeToBe
Added, timeZone ti
me_zone)

addTimeSkipping
Weekends(number t
, number timeToBe
Added, timeZone ti
me_zone, number b
eginning_of_week
end, number end_o
f_weekend)

addDaysSkipping
Weekends(number t
, number n,
timeZone time_zone

)

addDaysSkipping
Weekends(number t
, number n,
timeZone time_zone
, humber beginning
_of_weekend,
number end_of_we
ekend)

subtractDatesSkip
pingWeekends(nu
mber minuend_date
, number subtrahen
d_date, timeZone ti
me_zone)

subtractDatesSkip
pingWeekends(nu
mber minuend_date
, number subtrahen
d_date, timeZone ti
me_zone, number b
eginning_of_week
end, number end_o
f_weekend)

dateToString(numb
ert, timeZone time_
zone, language)

dateTimeToString(
number t, timeZone
time_zone, langua
ge)

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

Returns a timestamp resultant of adding n years to
timestamp t. You should use this function instead of
simply adding 12 * { MONTH} or 365 * { DAY} , since
that won't take into account that some years have 366
days. Negative values for n are used in order to subtract
instead of adding.

Example: for timestamp t with value March, 25th 2011
23:15 calling to addYear s(t, 10, LOCAL) will return
a timestamp as a NUMBER with value March,

25th 2021 23:15

Adds timeToBeAdded to t and returns a
NUMBER with the difference that weekends

don't count in the sum, e.g., if t represents a date-time
which coincides with a Saturday, adding timeToBeAdde
d =2 *{HOUR} will return a date-time for next Monday
at 02:00 . Use negative values at timeToBeAdded for
subtracting time from t.

Same as previous function, returns a NUMBER

but with a custom defined weekend. Arguments beginni
ng_of_weekend and end_of_weekend take values { MO
NDAY} , { TUESDAY} { SUNDAY}

Example of usage for adding 12 hours to Current date
and time using Israeli weekend: addTi meSki ppi ng\Wee
kends({...currentDateTinme}, 12 * {HOUR},
LOCAL, {FRI DAY}, {SATURDAY})

Returns a timestamp as a NUMBER

equivalent of t + n*{ DAY} with the difference that
weekends don't count in the sum, e.g., if t represents a
timestamp which coincides with a Friday, addingn =1
will return a date-time for next Monday. Negative values
for n are used in order to subtract days to t.

Same as previous function, returns a NUMBER

but with a custom defined weekend. Arguments beginni
ng_of_weekend and end_of_weekend take values

{ MONDAY}, { TUESDAY} { SUNDAY} .

Example of usage for adding 10 workdays to Due date
using Israeli weekend: addDaysSki ppi ng\Weekends
({...duedate}, 10, LOCAL, {FRI DAY},

{ SATURDAY})

Returns a timestamp as a NUMBER equivalent

"minuend_date - subtrahend_date" subtracting
weekend periods from the result, i.e., you get the
elapsed working time from subtrahend_date to minuen
d_date.

Same as previous function, returns a NUMBER

but with a custom defined weekend. Arguments beginni

ng_of_weekend and end_of_weekend take values

{ MONDAY}, {TUESDAY} ... {SUNDAY} .

Example of usage calculating the worktime from Creatio

n to Resolution using Israeli weekend: subt r act Dat es
Ski ppi ngWeekends({...resol utiondate}, {...

created}, LOCAL, {FRI DAY}, {SATURDAY})

Returns a STRING representing the date-

time value at t, in a certain time zone, and in a certain la
nguage. This function is useful in the Action Update
Field to represent as a string the result of a time
expression.

Returns a STRING representing the date-

time value at t, in a certain time zone, and in a certain la
nguage. This function is useful in the Action Update
Field to represent as a string the result of a time
expression.

dateTimeToString(
number t, string dat
e_time_pattern , la
nguage)

dateTimeToString(
number t, string dat
e_time_pattern ,
timeZone time_zone
, language)

monthToString(nu
mber t, timeZone ti
me_zone, language)

dayOfTheWeekToS
tring(number t,
timeZone time_zone
, language)

weekOfTheYear(nu
mber t, number first
DayOfTheWeek,
number minimalDa
ysInFirstWeek,
timeZone time_zon

e)

Available since
version 1.1.0

dayOfTheYear(num
ber t, timeZone time
_zone)

Available since
version 1.1.0

stringToDate(string s
, timeZone time_zo
ne)

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

NUMBER

TIMEZONE

NUMBER

TIMEZONE

TIMEZONE

STRING

Returns a STRING representing the date-
time value at t with a certain custom format defined by da
te_time_pattern string parameter, using a certain langu
age when using words for months, days of the week,

etc. This function is useful in Action Update Field to
represent as a string the result of a time expression.
Example: dat eTi meToStri ng(2011- 03-25 11: 30,
"yyyy. MM dd "at' HH nmss", USER _LANG
returns string "2011.03.25 at 11:30:00".

Returns a STRING representing the date-

time value at t with a certain custom format defined by da
te_time_pattern string parameter, in a certain timezone t
ime_zone, using a certain language when using words
for months, days of the week, etc. This function is useful
in the Action Update Field to represent as a string the
result of a time expression.

Example: dat eTi meToString(0, "yyyy. W dd
"at' HH: nmss", GMI, USER _LANG returns string "
1970.01.01 at 00:00:00".

Example: dat eTi meToString(0, "yyyy. MW dd
"at' HH nmss", MST, USER LANG returns string"
1969.12.31 at 17:00:00".

Returns a STRING with the name of the
month for a date-time t, in a certain time zone time_zone
, and in a certain language. This function can be used in
the Action Update Field to write the name of the month
of a date-time field or expression.

Returns a STRING with the day of the week

for a date-time t, in a certain time zone time_zone, and
in a certain language. This function is useful in the Actio
n Update Field to write the day of the week of a date-
time field or expression.

Returns the week of the year of the date-time tin a
certain time_zone as NUMBER . The
parameter firstDayOfTheWeek represents the first day
of the week, e.g.: {SUNDAY} in the U.S., and {MONDAY}
in Germany. The parameter minimalDaysInFirstWeek r
epresents the minimal number of days required in the
first week of the year, e.qg., if the first week is defined as
the one that contains the first day of the first month of
the year, value 1 should be used. If the minimal number
of days required must be a full week (e.g. all days of the
week need to be in that year), value 7 should be used.

Example: weekOf TheYear (2023/ 01/ 03,
{ SUNDAY}, 1, LOCAL) returns 1.

Example: weekOf TheYear (2023/ 01/ 03,
{ MONDAY}, 1, LOCAL) returns 2.

Example: weekOf TheYear (2023/ 01/ 03,
{ MONDAY}, 7, LOCAL) returns 1.

Returns the day of the year of date-time t in a certain ti
me_zone as NUMBER , e.g. for January 1st
the value returned will be 1.

Example: dayOf TheYear (2019/ 02/ 01, LOCAL) retur
ns 32

Returns a NUMBER with the date-time

represented by string s. The numeric value returned
corresponds to the milliseconds elapsed since January
1, 1970, 00:00:00 GMT. Valid input string formats are yy
yy/MM/dd HH:mm, yyyy-MM-dd HH:mm, yyyy/MM/dd,
yyyy-MM-dd, also formats relative to current time like in
JQL queries: "w" (weeks), "d" (days), "h" (hours) or "m"
(minutes), or format defined at system property jira.date.
time.picker.java.format.

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

stringToDate(string s
, string date_time_p
attern)

stringToDate(string s
, string date_time_p
attern , string langu
age , string country)

formatDuration(nu
mber duration)

shortFormatDurati
on(number duration

)

formatWorkDuration
(number duration)

shortFormatWorkD
uration(number dur
ation)

timeZone(string tim
eZone_name)

STRING

STRING

DURATION

DURATION

DURATION

DURATION

TIMEZONE

Returns a NUMBER with the date-time

represented by string s. Expected format of value at
parameter "s" is defined by date_time_pattern string
parameter. The numeric value returned corresponds to
the milliseconds elapsed since January 1, 1970, 00:00:
00 GMT.

Example: stri ngToDat e("2011. 03. 25 at 11: 30:
00", "yyyy.MMdd "at' HH mm ss") returns a
date-time numeric value that can be used for setting a
Date Time picker custom field.

Returns a NUMBER with the date-time

represented by string s. Expected format of value at
parameter "s" is defined by date_time_pattern string
parameter for a specific language (language code ISO
639-2) and country (country code ISO 3166 alpha-2).
The numeric value returned corresponds to the
milliseconds elapsed since January 1, 1970, 00:00:00
GMT.

Example: stringToDate("Dec 7, 2016 2:10: 25
AM PST", "MW d, yyyy h:mmss a z",

"eng", "US") returns a date-time numeric value that
can be used for setting a Date Time picker custom field.

Returns a STRING with the pretty
representation of a time duration, i.e. a subtraction of 2

date-time values, using the language of current user's
profile.

Example: f or mat Dur at i on(2017-01-31 11: 30 -
2017-01- 30 00: 00) returns "1 day, 11 hours, 30
minutes" .

Returns a STRING with the most compact

representation possible of a time duration, i.e. a
subtraction of 2 date-time values, using the language of
current user's profile.

Example: shor t For nat Dur ati on(2017-01-31 11:
30 - 2017-01-30 00: 00) returns "1d 11h 30m".

Returns a STRING similar to function f or mat
Dur ati on() but using the workday and workweek

defined at time tracking configuration , instead of 24
hours per day and 7 days per week.

Example: f or mat Wor kDur ati on(5 * 8 * {HOUR}
+2* 8* {HOUR} + 3 * {HOUR}) returns "1
week, 2 days, 3 hours", with 8 hours per workday and
5 days per workweek.

Returns a STRING similar to function shor t F
or mat Dur ati on() but using the workday and
workweek defined at time tracking configuration ,
instead of 24 hours per day and 7 days per week.

Example: f or mat Wor kDur ati on(5 * 8 * {HOUR}
+2* 8* {HOUR} + 3 * {HOUR}) returns "1w 2d
3h", with 8 hours per workday and 5 days per workweek

Returns the timeZone whose name is represented by
string timeZone_name. This function is useful to obtain
atimeZone from a string, like the value of a Project
Properties.

Example: t i meZone(" DST") returns DST timeZone.

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
https://www.loc.gov/standards/iso639-2/php/code_list.php
https://www.loc.gov/standards/iso639-2/php/code_list.php
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
https://www.loc.gov/standards/iso639-2/php/code_list.php
https://www.loc.gov/standards/iso639-2/php/code_list.php
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://confluence.atlassian.com/adminjiraserver073/configuring-time-tracking-861253946.html
https://confluence.atlassian.com/adminjiraserver073/configuring-time-tracking-861253946.html

timelnValue(string STRING
field field, boolean

Available since
version 1.1.0

timelnValue(numbe NUMBER
r field field, boolean

prpression predicate

Available since
version 1.1.0

timelnValue(string STRING
field field, issue list i
ssues, boolean
expression predicate

)

Available since
version 1.1.0

ISSUE]

Returns the NUMBER of milliseconds a string f

ield with code %{nnnnn} of the current issue has had a
value satisfying a boolean expression predicate, where
the string value of the field with code %{nnnnn} is
represented by "%

Example: ti mel nval ue(% 00000}, "% ~~
"ERROR' OR "% ~~ "WARNI NG') returns the number
of milliseconds the field summary (field code %{00000})
of the current issue has contained any of the words
"ERROR" or "WARNING", ignoring the case.

Example: ti mel nVal ue(% 00094}, count
(toStringList(”"% ",")) > 1) returnsthe
number of milliseconds the field components (field code
%{00094}) of the current issue has contained more than
one selected component.

Example: timelnValue(%{00017}, 2% in ["Critical",
"High"]) returns the number of milliseconds the

field priority (field code %{00017}) of the current issue
has had a value of Critical or High.

Returns the NUMBER of milliseconds a

number or date-time field with code {nnnnn} of the
current issue has had a value satisfying a boolean
expression predicate, where the numeric value of the fie
Id with code {nnnnn} is represented by *.

Example: ti mel nVal ue({00012}, ~ != null) retur
ns the number of milliseconds the field Due date (field
code {00012}) of the current issue has had a value.

Example: ti mel nVal ue({10001}, ~ >= 5 AND *
<= 10) returns the number of milliseconds a
hypothetical numeric field called Passengers (field code {
10001}) of the current issue has remained between 5
and 10.

Example: ti mel nVal ue({10001}, nodul us(”, 2)
= 0) returns the number of milliseconds a hypothetical
numeric field called Passengers (field code {10001}) of
the current issue has had an even value (2, 4, 6,...).

Returns the sum of milliseconds a string field with code
%{nnnnn} has had a value satisfying a boolean
expression predicate in distinct issues as

NUMBER , where the string value of the field

with code %{nnnnn} is represented by "%

Example: ti mel nVal ue(% 00000}, subtasks(),
"o ~~ "ERROR' OR "% ~~ "WARNI NG') returns the
sum of milliseconds the summary fields (field code %
{00000}) of all subtasks of the current issue have
contained any of the words "ERROR" or "WARNING",
ignoring the case.

Example: ti mel nval ue(% 00094}, epic(), count
(toStringList(~% ",")) > 1) returnsthe
number of milliseconds the components fields (field code
%{00094}) in a linked Epic issue have contained more
than one selected component.

Example: ti mel nVal ue(% 00017},

filterByl ssueType(linkedl ssues(), "Bug,
New Feature"), ~%in ["Critical", "H gh"])
returns the sum of milliseconds all linked Bugs and New
Features of the current issue have had a priority (field
code %{00017}) value of Critical or High.

timelnValue(numbe
r field field, issue

list issues, boolean
expression predicate

)

Available since
version 1.1.0

timelnValue(string
field field, boolean
expression predicate
, string schedule_n
ame, timeZone time
_zone)

Available since
version 1.1.0

NUMBER

ISSUE []

BOOLEAN

STRING

BOOLEAN

STRING

TIMEZONE

Returns the sum of milliseconds a number or date-time fi

eld with code {nnnnn} has had a value satisfying a

boolean expression predicate in distinct issues as
NUMBER , where the numeric value of the field

with code {nnnnn} is represented by *.

Example: ti mel nval ue({00012}, subtasks(),
I'= nul |') returns the number of milliseconds the

field due date (field code {00012}) of all subtasks of the
current issue have had a value.

Example: ti mel nval ue({10001}, epic(), ™ >=

5 AND * <= 10) returns the number of milliseconds a
hypothetical numeric field called Passengers (field code {
10001}) of an Epic issue has had a value between 5 and
10.

Example: ti mel nval ue({10001},
filterBylssueType(linkedl ssues(), "Bug,
New Feature"), modul us(”, 2) = 0) returnsthe
number of milliseconds a hypothetical numeric field
called Passengers (field code {10001}) has had an even
value in any linked Bug or New Feature.

Returns the NUMBER of milliseconds a string f

ield with code %{nnnnn} of the current issue has had a
value satisfying a boolean expression predicate, where
the string value of the field with code %{nnnnn} is
represented by ~% The time being calculated by this
function is only counted during a defined schedule with
name schedule_name for time zone time_zone.

Example: ti mel nVal ue(% 00000}, "% ~~
"ERROR' OR "% ~~ "WARNI NG',

"schedul e_nanme", LOCAL) returns the number of
milliseconds the field summary (field code %{00000}) of
the current issue has contained any of the words
"ERROR" or "WARNING", ignoring the case, within a
schedule named schedule_name for the server's
default time_zone.

Example: ti mel nVal ue(% 00094}, count
(toStringList("% ",")) > 1,

"schedul e_nane", LOCAL) returns the number of
milliseconds the field components (field code %{00094})
of the current issue has contained more than one
selected component, within a schedule named schedule
_name for the server's default time_zone.

Example: ti mel nval ue(% 00017}, ~%in
["Critical", "H gh"], "schedul e_nane",
LOCAL) returns the number of milliseconds the current
issue has had a priority value of Critical or High (field
code %{00017}), within a schedule named schedule_na
me for the server's default time_zone.

timelnValue(numbe
r field field, boolean
expression predicate
, string schedule_n
ame, timeZone time
_zone)

Available since
version 1.1.0

timelnValue(string
field field,issue list i
ssues, boolean
expression predicate
, string schedule_n
ame, timeZone time
_zone)

Available since
version 1.1.0

NUMBER
BOOLEAN
STRING

TIMEZONE

STRING
ISSUE[]
STRING

TIMEZONE

Returns the NUMBER of milliseconds of a

number or date-time field with code {nnnnn} of the
current issue has had a values satisfying a boolean
expression predicate, where the numeric value of the fie
Id with code {nnnnn} is represented by *. The time
being calculated by this function is only counted during a
defined schedule with name schedule_name for time
zone time_zone.

Example: ti mel nval ue({00012}, "~ != null,
"schedul e_nanme", LOCAL) returns the number of
milliseconds the field due date (field code {00012}) of
the current issue has had a value, ignoring the case,
within a schedule named "my_schedule" for the server's
default time_zone.

Example: ti mel nval ue({10001}, ~ >= 5 AND "
<= 10, "schedul e_nane", LOCAL) returns the
number of milliseconds a hypothetical numeric field
called Passengers (field code {10001}) of the current
issue has had a value between 5 and 10, within a
schedule named schedule_name for the server's
default time_zone.

Example: ti mel nVal ue({10001}, nodul us(”, 2)
= 0, "schedul e_nanme", LOCAL) returns the
number of milliseconds a hypothetical numeric field
called Passengers (field code {10001}) in current issue
has had an even value, within a schedule named schedu
le_name for the server's default time_zone.

Returns the NUMBER of milliseconds a string f

ield with code %{nnnnn} has had a value satisfying a
boolean expression predicate in distinct issues, where
the value of the field with code %{nnnnn} is
represented by *% The time being calculated by this
function is only counted during a defined schedule with
name schedule_name for time zone time_zone.

Example: t i mel nVal ue(% 00000}, subtasks(),
Np ~~ "ERROR' OR "% ~~ "WARNI NG',
"nmy_schedul e", LOCAL) returns the sum of
milliseconds the fields summary (field code %{00000}) of
all subtasks of the current issue have have contained
any of the words "ERROR" or "WARNING", ignoring the
case, within a schedule named "schedule_name" for
the server's default time_zone.

Example: ti mel nVal ue(% 00094}, epic(), count
(toStringList("% ",")) > 1,

"nmy_schedul e", LOCAL) returns the number of
milliseconds the field components (field code %{00094})
in the linked Epic issue has contained more than one
selected component, within a schedule named my_sche
dule for the server's default time_zone.

Example: ti mel nVal ue(% 00017},

filterByl ssueType(linkedl ssues(), "Bug,
New Feature"), “%in ["Critical",

"Hi gh"], "ny_schedul e", LOCAL) returns the
sum of milliseconds all linked Bugs and New Features of
the current issue have had a priority (field code %
{00017}) value of Critical or High., within a

schedule named my_schedule for the server's default ti
me_zone.

timelnValue(numbe
r field field, issue

list issues, boolean
expression predicate
, string schedule_n
ame, timeZone time
_zone)

Available since
version 1.1.0

fieldChangeTimes(
string field field,
boolean expression
predicate)

Available since
version 1.1.0

NUMBER

ISSUE []

BOOLEAN

STRING

TIMEZONE

STRING

BOOLEAN

Returns the NUMBER of milliseconds number

or date-time field with code {nnnnn} has had a value
satisfying a boolean expression predicate in

distinct issues, where the numeric value of the field with
code {nnnnn} is represented by *. The time being
calculated by this function is only counted during a
defined schedule with name schedule_name for time
zone time_zone.

Example: ti mel nval ue({00012}, subtasks(),
!'= null, "schedul e_nane", LOCAL) returns the
number of milliseconds the field due date (field code {000
12}) of all subtasks of the current issue have had a
value, within a schedule named "my_schedule" for the
server's default time_zone.

Example: ti mel nval ue({10001}, epic(), ™ >=
5 AND N <= 10, "schedul e_nanme", LOCAL) retur
ns the number of milliseconds a hypothetical numeric
field called Passengers (field code {10001}) in the

linked Epicissue has had a value between 5 and

10, within a schedule named "schedule_name" for the
server's default time_zone.

Example: ti mel nVal ue({10001},

filterByl ssueType(linkedl ssues(), "Bug,
New Feature"), nodulus(”, 2) = 0,

"schedul e_nane", LOCAL) returns the number of
milliseconds a hypothetical numeric field

called Passengers (field code {10001}) has had an even
value in any linked Bug or New Feature, within a
schedule named schedule_name for the server's
default time_zone.

Returns the timestamps as NUMBER [] of when

a string value of field with code %{nnnnn} has changed
satisfying a certain predicate that depends on the

values of the field before and after the value change.

The string value before the change is represented by *0%
, and after the change by 1% The timestamps are
returned as a number list sorted in ascending order.

Example: f i el dChangeTi nes(% 00000}, ~0%!~~
"1 MPORTANT" AND "1% ~~ " | MPORTANT") returns
the list of timestamps when word "IMPORTANT" has
been added to the current issue's summary (field code %
{00000}) ignoring the case.

Example: fi el dChangeTi nes(% 00017}, ~0% =
null AND ~1% ! = nul |') returns the list of
timestamps of when the issue priority (field code %
{00017}) of the current issue has been set.

Example: fi el dChangeTi nes(% 00017}, ~0% not
in["Critical", "High"] AND "1%in
["Critical", "H gh"]) returns the list of
timestamps when current issue's priority (field code %
{00017}) has become Critical or High.

fieldChangeTimes(
number field field, b
oolean expression p
redicate)

Available since
version 1.1.0

fieldChangeTimes(
string field field,
issue list issues,
boolean expression
predicate)

Available since
version 1.1.0

fieldChangeTimes(
number field field, is
sue list issues,
boolean expression
predicate)

Available since
version 1.1.0

lastFieldChangeTi
me(string field field)

Available since
version 1.1.0

NUMBER

BOOLEAN

STRING

ISSUE[]

BOOLEAN

NUMBER

ISSUE []

BOOLEAN

STRING

Returns the timestamps as of when

a numeric / date-time value of field with code {nnnnn} h
as changed satisfying a certain predicate that depends
on the values of the field before and after the value
change. The numeric value before the change is
represented by ~0, and after the change by 1. The
timestamps are returned as a number list sorted in
ascending order.

NUMBER []

Example: fi el dChangeTi nes({00012}, 20 < "1)r
eturns the timestamps of when the Due date (field code {
00012}) has been edited to a higher value.

Example: fi el dChangeTi nes({10001}, abs(”0 -
A1) [~0 >= 0. 25) returns the timestamps of when
a hypothetical numeric field called Passengers(field code
{10001}) has been edited with a variation of at least 25%
over its previous value.

Returns the timestamps as NUMBER [] of when

a string value of field with code %{nnnnn} in distinct
parameter issues have changed satisfying certain predic
ate that depends on the values of the fields before and
after the value change. The string value before the
change is represented by ~0% and after the change by
1% The timestamps are returned as a number list
containing a sequence of sorted numeric values in
ascending order for each parameter issue.

Example: fi el dChangeTi nes(% 00000},

subt asks(), 0% !~~ "1 MPORTANT" AND "1%
~~ "I MPORTANT") returns the list of timestamps of
when the word "IMPORTANT" has been added the

the summary (field code %{00000}) of all current issue's
subtasks, ignoring the case.

Example: fi el dChangeTi nmes(% 00017}, epic(),
A0% = null AND ~1% ! = nul |') returns the list of
timestamps of when the issue priority (field code %
{00017}) of the current issue's epic has been set.

Example: fi el dChangeTi nes(% 00017},

li nkedl ssues("is bl ocked by"), "0%not in
["Critical", "H gh"] AND "1%in
["Critical", "H gh"]) returns the list of
timestamps of when the priority(field code %{00017}) in
all blocking linked issues has become Critical or High.

Returns the timestamps as of when

a numeric value of field with code {nnnnn} in distinct
parameter issues have changed satisfying a certain pred
icate that depends on the values of the fields before and
after the value change. The numeric value before the
change is represented by 20, and after the change by *1
. The timestamps are returned as a number list
containing a sequence of sorted numeric values in
ascending order for each parameter issue.

NUMBER []

Example: f i el dChangeTi mes({00012},
subtasks(), "0 < ~1) returns the timestamps of
when the due date (field code {00012}) has been edited
to a higher value in any of the current issue's subtasks.

Example: f i el dChangeTi nes({10001}, epic(),
abs(”~0 - ~1) / A0 >= 0.25) returns the
timestamps when a hypothetical numeric field

called Passengers (field code {10001}) in the current
issue's epic has been edited with a variation of at least
25% over its previous value

Returns the timestamp as of most
recent value update of a field with code %{nnnnn}.

NUMBER

Example: | ast Fi el dChangeTi me(% 00000}) returns
the timestamp of the last update of an
issue's summary (field code {00000}).

Time Macros

Date-Time values are numeric values representing the number of milliseconds elapsed since January
1, 1970, 00:00:00 GMT.

Macros are aliases for literal / fixed values. A comprehensive set of time macros is provided to make
your expressions more readable.

Macro Equivalent value

{ SECOND} 1000

{M NUTE} 1000 * 60

{ HOUR} 1000 * 60 * 60

{ DAY} 1000 * 60 * 60 * 24

{ VEEK} 1000 * 60 * 60 * 24 * 7

{ MONTH} 1000 * 60 * 60 * 24 * 30
{ YEAR} 1000 * 60 * 60 * 24 * 365

The following macros are available to be used with function dayOf TheWeek(t, time_zone):

Macro Equivalent
value
{ SUNDAY} 1
{ MONDAY} 2
{ TUESDAY} 3

{ VEDNESDAY} | 4
{ THURSDAY} 5
{ FRI DAY} 6

{ SATURDAY} 7

The following macros are available to be used with function nmont h(t, tinme_zone):

Macro Equivalent value
{ JANUARY} 1

{ FEBRUARY} 2

{ MARCH, 3
{ APRI L} 4
{MAY} 5
{JUNE} 6
{Juyy 7
{ AUGUST} 8

{ SEPTEMBER} | 9
{ OCTOBER} 10
{ NOVENBER} 11

{ DECEMBER} 12

Examples

Input Output
(2*6) /3 Returns the result of a simple calculation: 4
{...duedate} + 2 * {DAY} Returns a date which is two days in the future of
the current Due Date.
round(({...duedate} - {... Returns the number of hours from between the curre
currentDateTine}) / {HOUR}) nt date and time to Due Date.

Strings

Fixed values

® Texts or strings need to be written in double quotes, e.g., "This is a string literal."

® Operator + is used for concatenating string. e.g., "This is" + " a string." = "This is a string." .

® The Escape character is "\ " . This character can precede any of the following characters: ", \,
n, r, t, f and b in order to invoke an alternative interpretation.
For example, if you want to introduce a double quote in a string literal you should precede it with
escape character\ as in "The man said: \"Hel | o!\"." , where we are using escape
character \ to write string Hello! in double quotes.

Variable values (field values)

Text / String field values can be inserted in expressions using field codes with format %f{...somefield},
or %{...somefield.i} for referencing concrete levels in cascading select fields (i = O for base level).

@ Pro tip

For checking if a field has a value you can use % . . . sonefield} = null or%. ..

sonmefield} !'= null.
For a concrete level in a Cascading Select or Multi-Cascading Select field, you should use %
{...sonmefield.i} = null or%...sonefield.i} != null.

@ Any field type has a string value, so you can also use %{...somefield} to insert string values of fields
of types: Number, Date, Date-Time and Priority.

String Functions

Function Input Returned value

trim(string s) STRING Returns a copy of the STRING without leading and

trailing blanks (space and tab characters).
Example:trim(" Hello World! ") returns"Hello World!".

substring(stri STRING Returns a substring of the STRING beginning at
ng s, number index beginindex and ending at endIndex - 1. Thus the length
beginindex, of the substring is endIndex-beginindex.
gum)ber endin Example: substring("sniles", 1, 5) returns "mile".
ex
toUpperCase STRING Returns STRING with all its characters converted
(string s) to upper case.
Example: t oUpper Case("heLLo WORLD! ") returns "HELLO
WORLD!".
toL_owerCase STRING Returns STRING s with all its characters converted
(string s) to lower case.

Example: t oLower Case("heLLo WORLD! ") returns "hello
world!".

capitalizeWor
ds(string s)

capitalizeWor
dsFully(string
s)

replaceAll(stri
ng s, string re
gexp, string r
eplacement)

replaceFirst(
string s,
string regexp,
string replace
ment)

matches(strin
gs, string reg
exp)

findPattern(st
ring s, string r
egexp)

findPatternlg
noreCase(stri
ng s, string re
gexp)

findModify(st
ring s, string r
egexp, string

replacement_

expression)

findReplaceA
li(string s,
string find,
string replace
ment)

findReplaceA
lllgnoreCase(
string s,

string find,
string replace
ment)

STRING

STRING

STRING

REGEX

STRING

REGEX

STRING
REGEX

STRING

REGEX

STRING []

REGEX

STRING
REGEX

STRING

STRING

Capitalizes all the whitespace separated words in
STRING

Example: capi t al i zeWsrds("heLLo WORLD! ") returns "H
eLLo WORLD!".

Converts all the whitespace separated words in

STRING into capitalized words, that is each word is
made up of a titlecase character and then a series of
lowercase characters.
Example: capi t al i zeWordsFul | y("heLLo WORLD! ")
returns "Hello World!".

Returns a copy of s where each substring matching the given r
egular expression regexp has been replaced with the given re
placement string.

Example: repl aceAl | (" Hello World ", "\\s", "")
returns "HelloWorld" .

Returns a copy of STRING where the first substring

matching the given regular expression regexp has been
replaced with the given replacement string.

Example: repl aceFirst("Hello World", "I", "_")
returns "He_lo World" .

Returns a value true if string s matches re

gular expression regexp, otherwise returns false.
Example: mat ches("readnme.txt", ".*\\.txt$")
returns true .

Returns a STRING [] with all substrings in argument s
matching regular expression in string argument regexp.
Example: fi ndPat t er n(" Bet ween 1900 and 2000

worl d popul ation increase from1.5 to 6.1
billions.™, "\\d+(\\.\\d+)?") returns ["1900",
"2000","1.5","6.1"] .

Returns a STRING [] with all substrings in argument s

matching regular expression in string argument regexp.
Evaluation of the regular expression is carried out in ignoring
case mode.

Example: fi ndPatt ernl gnoreCase("Grass is Geen
and Sky is Blue.", "red|green|blue") returns
["Green", "Blue"] .

Returns a STRING like s, but where all substrings

matching regexp have been replaced with the result of
evaluating replacement_expression against each these
substrings. Argument text_expression is an expression that
returns a string, where ~% represents each of the matching
substrings, and » represents the order of appearance
beginning with 1.

Example: findModify("The cure for boredomis
curiosity.", "[aeiou]", modulus(®, 2) =172
toUpper Case("% : "% returns "ThE curE for bOredOm
is cUriOsity." .

Returns a STRING with content of argument s wher
e every ocurrence of substring find has been replaced with
string replacement.

Example: f i ndRepl aceAl | (" Goodbye ny | ove, hello
ny friend.", "ny", "your") returns "Goodbye your
love, hello your friend." .

Returns a STRING with content of argument s wher

e every ocurrence of substring find, ignoring the case, has
been replaced with string replacement.

Example: fi ndRepl aceAl | | gnoreCase("Hell o ny
love, hello ny friend.", "hello", "Goodbye")
returns "Goodbye my love, Goodbye my friend." .

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#sum
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#sum
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#sum
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#sum
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#sum
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#sum
http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#sum

findReplaceF
irst(string s,
string find,
string replace
ment)

findReplaceF
irstignoreCase
(string s,

string find,
string replace
ment)

length(string s

)

getAscii(num
ber code)

similarity(stri
ng s1, string s2

)

escapeHTML
(string s)

unescapeHT
ML(string s)

WikiTOHTML(
string s)

htmIToTxt(str
ing s)

Examples

STRING

STRING

STRING

NUMBER

STRING

STRING

STRING

STRING

STRING

Returns a STRING with content of argument s wher
e first ocurrence of substring find has been replaced with
string replacement.

Example: f i ndRepl aceFi r st (" Goodbye ny | ove,

hello ny friend.", "ny", "your") returns "Goodbye
your love, hello my friend." .

Returns a STRING with content of argument s wher
e first ocurrence of substring find, ignoring the case, has been
replaced with string replacement.

Example: findRepl aceFi rst|gnoreCase(" Goodbye ny
love, hello ny friend.", "MW", "your") returns "Go
odbye your love, hello my friend." .

Returns a NUMBER with the length of s.
Example: | engt h(" St ar Wars") returns 9.

Returns a STRING containing the symbol

corresponding to a extended ASCII code (0 <= code <= 255).
Example: get Asci i (65) returns "A" .

Returns a NUMBER value between 0 and 100
representing the percentage of similarity between two strings
based on the Jaro Winkler similarity algorithm . 100 represe
nts full equivalence, and O represents zero similarity
between both string arguments.

Examples:

simlarity("Autonmation Tool box for Jira",

"Aut omat i on Tool box for Jira") returns 100

simlarity("Automation Tool box for Jira",
"Jira Worfl owTol box") returns 97

simlarity("My Gm Childrens Fitness", "MW
Gym Children's Fitness Center") returns 92

simlarity("D NH Enterprises Inc", "D &H
Enterprises, Inc.") returns 91

simlarity("ABC Corporation", "ABC Corp'")
returns 92

simlarity("Hello World!", "Bye bye Wrld!'")
returns 69

simlarity("l caught a lizard", "This is ny
giraffe") returns 51

Escapes the characters in a STRING
entities.

Example: escapeHTM.(" <Fr ancgai s>") returns "&lIt;
Français>" .

using HTML

Unescapes STRING containing entity escapes to a
string containing the actual Unicode characters corresponding
to the escapes.

Example: unescapeHTM_(" " ; br ead" ; &anp;
" ; but t er " ; ") returns "\"bread\" & \"butter\"" .

Renders rich text wiki content of STRING into
HTML.

Example: wi ki TOHTM_("+Hel | o *wor | d*! +") return "<p>
<ins>Hello world!</ins></p>" .

Renders HTML content of STRING
by removing all the html tags.

Example: wi ki TOHTM_("<p>Hel | o wor | d! <
[p>") return "Hello world!" .

into plain text

http://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance

Input

"Hello" + " " + "world" + ".

trim(%...summary})

% ...description} + "\nLAST
USER. " + toUpperCase(%...
current User})

Issue lists

Overview

Output
Hello world.

Summary of an issue without leading and trailing bla
nks

Description of an issue and a new line with string "LA
ST USER: " and the name of current user in upper
case.

The Issue list data type is an ordered list of issues.

This data type is returned by functions returning selections of issues (linked issues, sub-tasks, issues

in a project, or subsets).

@ Example

An issue list with 5 elements: [HR- 1, HR- 2, HR- 3]

Issue list functions

@ Issue list functions either return issue lists (e.g. [issuekey-1,issuekey-2,issuekeya3,...]) or strin
g lists or number lists for retrieving issue fields

The following functions are intended to build expressions that reference linked issues, sub-tasks, or
doing any kind of issue selection, and for retrieving their field values.

Function Input

subtasks()

subtasks(iss ISSUE []
ue listissues

)

subtasks(str STRING
ing issue_ke
ys)

siblingSubt
asks()

siblingSubt ISSUE []
asks(issue
listissues)

Returned value
Returns the ISSUE [] of sub-tasks of current issue.

Returns the ISSUE [] of sub-tasks of issues in
argument issues. Duplicated issues in argument issues are
discarded.

Example: subt asks(|i nkedl ssues()) returns the list of sub-
tasks of linked issues.

Returns the ISSUE [] of sub-tasks of issues whose

keys are in issue_keys. Argument issue_keys is a comma
separated list of issue keys. Duplicated issue keys in argument i
ssue_keys are discarded.

Example: subt asks(% . . . par ent | ssuekey}) returns the
list of sub-tasks of parent issue, i.e., sibling sub-tasks plus
current sub-task.

Returns the ISSUE [] of sibling sub-tasks of current
issue, i.e., all sub-tasks with the same parent as current issue,
except current issue. In case current issue is not a sub-task, an
empty issue list will be returned. Note that si bl i ngSubt asks()
is equivalent to subt asks(% . . . parent | ssuekey})

EXCEPT i ssueKeysTol ssueLi st (%. .. |ssuekey}) ,
where %{...parentlssuekey} is Parent's issue key and %f...
Issuekey} is Issue key.

Returns the ISSUE [] of sibling sub-tasks of issues in

argument issues, provided they are sub-tasks. Duplicated
issues in argument issues are discarded.

https://apps.decadis.net/display/AUTOMATION/Data+types

siblingSubt
asks(string i
ssue_keys)

linkedlssues

0

linkedlssues
(string issue
_link_types)

linkedlssues
(string issue
_link_types,
issue list iss

ues)

linkedlssues
(string issue
_link_types,
string issue_
keys)

transitionLi
nkedlIssues(
string issue_
link_types)

transitively
LinkedIssues
(string issue
_link_types)

transitively
LinkedlIssues
(string issue
_link_types,
issue listiss
ues)

transitively
LinkedlIssues
(string issue
_link_types,
string issue_
keys)

STRING

STRING

STRING

ISSUE []

STRING

STRING

STRING

STRING

ISSUE []

STRING

Returns the ISSUE [] of sibling sub-tasks of issues

whose keys are in issue_keys, provided they are sub-tasks.
Argument issue_keys is a comma separated list of issue keys.
Duplicated issue keys in argument issue_keys are discarded.

Returns the ISSUE [] of issues linked to current

issue, including Epic-Task links. An issue appears in the output
as many times as is linked to current issue. Function distinct(iss
ue list) can be used to remove duplicated issues.

Example: di stinct (1inkedl ssues() EXCEPT

l'i nkedl ssues("has Epic, is Epic of")) returnsall
the issues linked to current issue, excluding Epic-Task issue
links.

Returns the ISSUE [] of issues linked to current one

using issue link types in argument issue_link_types. Argument i
ssue_link_types is a comma separated list of issue link type
names, or an empty string (") for representing all issue link
types, i.e., | i nkedl ssues("") is equivalentto | i nkedl ssue
s() .

Example: | i nkedl ssues("bl ocks, clones") returns all
issues linked with to current issue using issue link types blocks
or clones.

Returns the ISSUE [] of issues linked to those ones

in argument issues using issue link types in argument issue_lin
k_types. Duplicated issues in argument issues are discarded.
Example: | i nkedl ssues("", subtasks()) returnsall
issues linked to current issue's sub-tasks using any issue link

type.

Returns the ISSUE [] of issues linked to those ones

whose keys are in argument issue_keys. Argument issue_keys
is a comma separated list of issue keys. Duplicated issue keys
in argument issue_keys are discarded.

Example: | i nkedl ssues("i s bl ocked by", %. ..
parent | ssuekey}) returns all issues blocking parent issue.

Returns the ISSUE [] of issues linked to current one

with links created in current transition screen using issue link
types in argument issue_link_types. Argument issue_link_typ
es is a comma separated list of issue link type names, or an
empty string ("") for representing all issue link types, i.e., t r an
si tionLi nkedl ssues("") is equivalent to

transitionLi nkedl ssues() . This function is useful for
validating only new issue links created by user in transition
screen.

Example: transitionLi nkedl ssues("bl ocks, clones")
returns the list of issues linked in current transition's screen
using issue link types blocks and clones.

Returns the ISSUE [] of issues directly or transitively

linked to current issue using issue link types in argument issue_|
ink_types. Argument issue_link_types is a comma separated
list of issue link type names, or an empty string ("") for
representing all issue link types.

Example of transitive link: if ISSUE-1 blocks ISSUE-2 blocks
ISSUE 3, then ISSUE-1 is blocking transitively ISSUE-3.

Returns the ISSUE [] of issues directly or transitively

linked to those ones in argument issues using issue link types
in argument issue_link_types. Argument issue_link_types is
a comma separated list of issue link type names, or an empty
string ("") for representing all issue link types.

Returns the ISSUE [] of issues directly or transitively

linked to those ones in argument issue_keys using issue link
types in argument issue_link_types. Argument issue_link_typ
es is a comma separated list of issue link type names, or an
empty string ("") for representing all issue link types.

epic()

epic(issue ISSUE []
listissues)

epic(string is STRING
sue_keys)

issuesUnde
rEpic()

issuesUnde ISSUE []
rEpic(issue
listissues)

issuesUnde STRING
rEpic(string i
ssue_keys)

siblinglssue
sUnderEpic()

siblinglssue ISSUE []
sUnderEpic(

issue list iss

ues)

siblinglssue STRING
sUnderEpic(

string issue_

keys)

Returns an ISSUE [] containing current issue's epic,

in case current issue is directly under an epic (e.g., a Story). If
current issue is a sub-task, then the epic of its parent issue is
returned. If current issue is an epic itself, then current issue is
returned.

Returns the ISSUE [] of epic issues under which

those issues in argument issues are. If some of those issues
are sub-tasks, then the epic of their parent is returned.
Duplicated issues in argument issues are discarded. Output can
contain duplicated issues.

Example: epi c(linkedl ssues("is bl ocked by")) retur
ns the list of epics of those issues which are blocking current
issue.

Returns the ISSUE [] of epic issues under which

those issues with keys in issue_keys are. If some of those
issues are sub-tasks, the epic of their parent is returned.
Argument issue_keys is a comma separated list of issue keys.
Duplicated issue keys in argument issue_keys are discarded.
Output can contain duplicated issues.

Example: epi c("CRWM 15, HD-21") returns the list of epics
under which issues with keys CRM-15 and HD-21 are.

Returns an ISSUE [] containing issues which are

directly under current issue's epic (i.e., Stories are included in
the output, but their sub-tasks are not). Current issue's epic is
obtained using the logic of function epic() . Current issue is
included in the output, except if current issue is an epic itself.

Returns an ISSUE [] containing issues which are

directly under the epic of issues in argument issues. Duplicated
issues are filtered from output.

Example: i ssuesUnder Epi c(1i nkedl ssues("i s

bl ocked by")) returns the list of issues directly under epics
of issues blocking current issue.

Returns an ISSUE [] containing issues which are

directly under the epic of issues with keys in argument issue_ke
ys. Argument issue_keys is a comma separated list of issue
keys. Duplicated issues are filtered from output.

Example: i ssuesUnder Epi c(" CRM 15, HD-21") returns
the list of issues directly under epic of issues with keys CRM-15
and HD-21.

Returns an ISSUE [] containing issues which are

directly under epic of current issue (i.e., Stories are included in
the output, but their sub-tasks are not), excluding current issue.
Current issue should be an issue directly under an epic, (i.e., it
can't be a sub-task or an epic).

Returns an ISSUE [] containing issues which are

directly under the epic of issues in argument issues, excluding
issues in argument issues from the output. Duplicated issues
are filtered from output.

Example: si bl i ngl ssuesUnder Epi c(| i nkedl ssues("is
bl ocked by")) returns the list of issues directly under epics
of issues blocking current issue, excluding from the output
issues blocking current issue.

Returns an ISSUE] containing issues which are

directly under the epic of issues with keys in argument issue_ke
ys, excluding from the output issues with keys in argument issue
_keys. Argument issue_keys is a comma separated list of

issue keys. Duplicated issues are filtered from output.

Example: si bl i ngl ssuesUnder Epi c("CRM 15, HD-21")
returns the list of issues directly under epic of issues with keys C
RM-15 and HD-21, excluding from the output issues with keys C
RM-15 and HD-21.

issuesFrom
JQL(string jq
I_query)

issuesFrom
JQL(string jq
|_query,
string user_
name)

filterBylssu
eType(issue
listissues,
string issue_
types)

filterByStat
us(issue listi
ssues,
string status
es)

filterByStat
usCategory(
issue listiss
ues, string st
atus_catego
ries)

filterByRes

olution(issu
e listissues,
string resolu
tions)

filterByProj
ect(issue list
issues,
string projec
ts)

filterByProj

ectCategory
(issue list iss
ues, string p
roject_cate

gories)

filterByField
Value(issue
listissues,
numeric

field field,
comparison
operator ope
rator,
number n)

STRING

STRING

ISSUE []

STRING

ISSUE []

STRING

ISSUE []

STRING

ISSUE []

STRING

ISSUE []

STRING

ISSUE []

STRING

ISSUE []

NUMBER

Returns the ISSUE [] resulting of the execution of a
JQL query represented by string argument jql_query. Visibility
permissions applied are those of current user. We advice to
use this function for performance reasons when the number of
issues to be retrieved or filtered is very high (all issues in a
project or various projects). Typically you will want to use this
function for replacing any current expression using getlssuesFr
omProjects() function.

Returns the ISSUE [] resulting of the execution of a
JQL query represented by string argument jgl_query. Visibility
permissions applied are those of user in argument user_name.
We advice to use this function for performance reasons when
the number of issues to be retrieved or filtered is very high (all
issues in a project or various projects). Typically you will want to
use this function for replacing any current expression using getls
suesFromProjects() function.

Filters ISSUE [] in argument issues, leaving only

those issue types appearing in argument issue_types.
Argument issue_types is a comma separated list of issue type
names.

Example: filterByl ssueType(subtasks(), "Bug,

I nprovernent, New Feature") returns the list of sub-tasks
with issue types Bug, Improvement or New Feature.

Filters ISSUE [] in argument issues, leaving only

those ones in statuses appearing in argument statuses.
Argument statuses is a comma separated list of status names.
Example: filterByStatus(linkedIssues("is blocked by"),
"Open, Reopened, In Progress") returns the list of blocking
issues in statuses Open, Reopened or In Progress.

Filters ISSUE [] in argument issues, leaving only

those ones in statuses with categories in status_categories.
Argument status_categories is a comma separated list of
status category names.

Example: fi | t er BySt at usCat egory(|i nkedl ssues("is
bl ocked by"), "New, In Progress") returns the list of
blocking issues in statuses with categories New or In Progress.

Filters ISSUE [] in argument issues, leaving only

those ones with resolutions appearing in argument resolutions.
Argument resolutions is a comma separated list of resolution
names. If this argument receives an empty string (" "), the
function will return issues with unset field Resolution.

Example: fi | t er ByResol uti on(subtasks(), "Wn't

Fi x, Cancel | ed") returns the list of sub-tasks with
resolutions Won't Fix or Cancelled.

Filters ISSUE [] in argument issues, leaving only

those ones in projects present at argument projects. Argument
projects is a comma separated list of project keys.

Example: fi | t er ByProj ect (| i nkedl ssues(), "CRM
HR") returns the list of linked issues belonging to projects with
keys CRM or HR.

Filters ISSUE [in argument issues, leaving only

those ones in projects with category in project_categories.
Argument project_categories is a comma separated list of
project category names.

Example: fi |l t er ByProj ect Cat egory(!li nkedl ssues(),
"Devel opnent, Production") returns the list of linked
issues belonging to projects in categories keys Development or
Production.

Filters ISSUE [] in argument issues, leaving only
those issues where logical predicate formed by arguments field
operator n is evaluated as true. Available comparison operators
are=, !=, <, <=, >and>=.Argument field has format{...
somefield}.

Example: fi | t er ByFi el dVal ue(subt asks(), {00079},
>, 1) returns sub-tasks with more than one Affects Version/s.

filterByField
Value(issue
listissues,
string field fi
eld,
comparison
operator ope
rator, string s

)

filterByCard
inality(issue
list1,
comparison
operator ope
rator,
number n)

append(issu
e listl, issue
list m)

union(issue
list 1, issue
list m)

except(issue
list 1, issue
list m)

intersect(iss
ue list |,
issue list m)

distinct(issu
elistl)

fieldvalue(st
ring field field
,issue listis
sues)

fieldvalue(n
umeric field f
ield, issue
listissues)

ISSUE []

STRING

ISSUE[]

NUMBER

ISSUE []

ISSUE []

ISSUE []

ISSUE []

ISSUE []

STRING

ISSUE[]

NUMBER

ISSUE []

Filters ISSUE] in argument issues, leaving only

those issues where logical predicate formed by arguments field
operator s is evaluated as true. Available comparison operators
are=, !=, <, <=, > >= ~ |~ inandnot in.Case
ignoring operators are also available: =~, =~ ~~ |~~
in~ andnot in~.Argument field has format %{...somefield}
for string fields, or %{...somefield.i} for cascading select fields.
Example: fi | t er ByFi el dval ue(linkedl ssues(), %...
conponents}, ~, "Web") returns linked issues with
component "Web".

Returns ISSUE [] in | whose cardinality (i.e., the

number of times it appears in list |) satisfies the comparison
cardinality operator n. Available comparison operators: =, !
= < <5, >and >= .

Example: fil terByCardinality(linkedlssues(), >,
1) returns a list with all issues linked to current issue with 2 or

more issue links.

Returns ISSUE [] with all issues in arguments | and m

. Duplicated issues may appear in output. Use function union(l,
m) instead, if you want to avoid repetitions.

Example: append(| i nkedl ssues("i s bl ocked by"),
subt asks()) returns the list blocking issues plus sub-tasks. If
a sub-task is also linked with issue link type "is blocked by", it
will appear twice in the output list.

Returns ISSUE [] with all issues in argument | or in

argument m without duplicated issues.

Example: uni on(| i nkedl ssues(), subtasks()) returns
the list of linked issues and sub-tasks of current issue, without
issue repetitions.

Returns ISSUE [] with all issues in argument | which

are not in argument m. Duplicated issues in | may appear in
output. Use function distinct() to remove them if you need to.
Example: except (| i nkedl ssues(), subtasks()) returns
the list of linked issues removing those which are also sub-tasks
of current issue.

Returns ISSUE [] with all issues in argument | and m

simultaneously.

Example: i ntersect (i nkedl ssues(), subtasks())
returns the list of linked issues which are also sub-tasks of
current issue.

Returns ISSUE [] with all issues in list | without any
duplication.

Example: di stinct (linkedl ssues()) returns the list of
linked issues, with only one occurrence per issue, although an
issue may be linked with more than one issue link type.

Returns the STRING [] of string values stored in

argument field in those issues in argument issues. Argument
field has format %f{...somefield}, or %{...somefield.i} for
cascading select fields. The number of values in output is the
number of issues in argument issues with field set, except for
multi-valued fields, for which a value is returned for each
selected value in the field. Multi-valued fields are fields of types
Multi Select, Checkboxes, Components, Versions, Multi
User Picker, Multi Group Picker, Issue Pickers, Attachments
and Labels.

Example: fi el dvVal ue(%...reporter}, subtasks())
returns the list of reporter users of sub-tasks.

Returns the NUMBER [] of numeric values stored in

argument field in those issues in argument issues. Argument fie
Id has format {...somefield}. The number of values in output is
the number of issues in argument issues with field set.
Example: fi el dVal ue({...duedate}, subtasks())
returns the list of Due Dates of sub-tasks.

textOnlssue
List(issue
listissues,
string text_e
xpression)

mathOnlssu
eList(issue
listissues,
number mat
h_time_exp
ression)

numberOfR

emotelssue
Links(string

issue_link_t
ypes)

count(issue
list 1)

getlssuesFr
omProjects(
string projec
ts)

first(issue
list 1)

last(issue
list 1)

nthElement(
issue list I,
number n)

sublist(issue
list1,

number inde
XxFrom,
number inde
xTo)

indexOf(stri
ng issue_key
, issue list 1)

indexOf(issu
e list element
, issue list 1)

ISSUE []

STRING

ISSUE []

NUMBER

STRING

ISSUE []

STRING

ISSUE []

ISSUE []

ISSUE []

NUMBER

NUMBER

STRING

ISSUE []

Returns a STRING [] resulting of evaluating text_expre

ssion against each of the issues in argument issues. Argument
text_expression is an expression that returns a string, where
references to field values of issues in argument issues are done
with prefix before field code, e.g., *%({...summary} is field
code for Summary in each of the issues in argument issues.
Example: t ext Onl ssuelLi st (subt asks(), "%...
assignee} = "% ...reporter} ? "9...I|ssuekey}
nul ') returns the issue keys of sub-tasks with same user as
reporter and as assignee.

Returns a NUMBER [] resulting of evaluating math_time

_expression against each of the issues in argument issues.
Argument math_time_expression is a math/time expression,
where references to field values of issues in argument issues
are done with prefix * before field code, e.g., *{...duedate} is
field code for Due date in each of the issues in argument issues

Example: mat hOnl ssuelLi st (1 i nkedl ssues("i s

bl ocked by"), (~{...duedate} != null ? ~{...
duedate} - ~{...created} : 0) / {HOUR}) returns a
list of numbers with the number of days from issue creation to
due date for all issues linked using "is blocked by" issue link
type.

Returns the NUMBER of issue links to other Jira
instances using any of the issue link types in argument issue_lin
k_types. Argument issue_link_types is a comma separated list
of issue link type names, or empty string ("") for representing
all issue link types.

Returns the NUMBER of issuesin|.
Example: count (fil t er ByResol uti on(li nkedl ssues
("is blocked by"), "")) returns the number of non-

resolved blocking issues.

Returns an ISSUE [] with all issues of projects in

argument projects. Argument projects is a string containing a
comma separated list of project keys or project names.
Example: get | ssuesFronProj ects("CRM HT") returns all
issues in project CRM and HT.

This function can make your expression run slowly due to the
high number of issues retrieved and needing to be filtered.
Using issuesFromJQL() for retrieving and filtering issues will
make your expression run much faster.

Returns an ISSUE] with the first element in issue
list1, or an empty list if | is an empty list.

Returns an ISSUE [] with the last element in issue list |
, or an empty list if | is an empty list.

Returns an ISSUE [] with the element at position n in

issue list I, where n >= 1 and n <= count(l). Returns an empty
list if n is greater than the number of elements in I.

Returns an ISSUE [] with elements in | from indexFro

m index to indexTo index. Having indexFrom >= 1 and indexFr
om <= count(l) and indexTo >= 1 and indexTo <= count(l) and
indexFrom <= indexTo.

Returns the index NUMBER in issue list | of issue with
key issue_key. Zero is returned when issue is not found in I.

Returns the index NUMBER in issue list | of first issue

in element. Zero is returned when first issue in element is not
foundinl.

sort(issue
list I, field field
, order)

ISSUE []

Examples

Input
subt asks()

l'i nkedl ssues("is bl ocked by,
is caused by")

filterByl ssueType

(l'inkedl ssues(), "Bug,

I nci dent")
filterByPredicate
(siblingSubtasks(), %A...
resolution} !'= null)

Number lists

Overview

Returns an with elements in | ordered

according to values of field. Argument field has format {...
somefield} for numeric and date-time fields, %{...somefield} for
string fields, or %{...somefield.i} for cascading select fields.
Available orders are ASC (for ascending order) and DESC (for
descending order).

Example: sort (1 i nkedl ssues("is bl ocked by"), {...
duedat e}, ASC) returns the list of issues blocking current
issue, sorted in ascending order by Due date.

ISSUE []

Output
Returns the list of sub-tasks of the current issue.

Returns the list of issues linked to current one through
issue link types "is blocked by" and "is caused by".
Returns the list of linked issues with issue type "Bug" or "
Incident".

Returns the list of sibling sub-tasks (i.e., sub-tasks of
same parent as current sub-task) which are not
resolved.

The Number list data type is an ordered list of numbers. This data type is returned, among others, by
functions that return values of number fields in a selection of issues (linked issues, sub-tasks, and subs

ets).

Fixed values

A number list can also be written in literal form using the following format: [number, number, ...].

G} Example

A number list with 5 elements: [1,

Number list functions

-2, 3, 3.14, 2.71]

The following functions are intended to build expressions that return number lists or numbers.

Function Input
filterByCardinality
(number list I,
comparison
operator operator

, humber n)

NUMBER [

NUMBER

filterByValue(nu
mber list I,
comparison
operator operator
, humber n)

NUMBER [

NUMBER

Returned value

Returns a NUMBER [] | whose cardinality (i.e., the
number of times it appears in list I) satisfies the
comparison cardinality operator n. Available comparison
operators: =, !=, <, <=, >and>=.

Example: filterByCardinality([1, 1, 2, 3, 4,

4, 4, 5], >, 1) returns the following number list: [1, 4]

Returns a
number_in_list operator n.

Example: filterByValue([1, 2, 3, 10, 11, 25,
100], >, 10) returns the list of numbers greater than 10.
i.e., [11, 25, 100]

NUMBER [] | satisfying the comparison

https://apps.decadis.net/display/AUTOMATION/Data+types

filterByPredicate(
number list I,
boolean
expression predic
ate)

append(number
list I, number list m

)

union(number list |
, number list m)

except(number
list I, number list m

)

intersect(number
list I, number list m

)

distinct(number
listI)

count(number list |

)

count(number n,
number list)

sum(number list I)

avg(number list I)

NUMBER [

BOOLEAN

NUMBER [

NUMBER [

NUMBER []

NUMBER []

NUMBER []

NUMBER []

NUMBER

NUMBER [

NUMBER [

NUMBER []

Returns a NUMBER [] | that validates a predicate.

Argument predicate is a boolean expression, where » is
used for referencing numeric values in argument |.
Example: filterByPredicate([1, 2, 3, 4], ~ >
2) returns values greater than 2, i.e., [3, 4] .

Example: filterByPredicate([1, 2, 3, 4],

remai nder (», 2) = 0) returns even values, i.e., [2, 4] .

Returns a NUMBER [] with all numbers in

arguments | and m. Duplicated numbers may appear in
output. Use function union(l, m) instead, if you want to
avoid repetitions.

Example: append([1, 2, 3], [3, 4, 5]) returns[1,
2,3,3,4,5].

Example: append(fi el dval ue({00025},

li nkedl ssues("is blocked by")), fieldValue
({00025}, subtasks())) returns a list of numbers
with Total Time Spent (in minutes) in blocking issues and
sub-tasks. This number list can be summed using function
sum().

Returns a NUMBER [] with all numbers in
argument | or in argument m without duplicated numbers.
Example:union([1, 2, 3], [3, 4, 5]) returns[1,
2,3,4,5].

Returns a NUMBER [] with all numbers in
argument | which are not in argument m. Duplicated
numbers in | may appear in output. Use function distinct()
to remove them if you need to.

Example: except ([1, 2, 3, 4, 5], [2, 4])
returns [1, 3, 5].

Returns a NUMBER [] with all numbers in
argument | and m simultaneously.
Example:intersect([1, 2, 3, 4, 5], [9, 7,
5, 3, 1]) returns|1, 3, 5].

Returns a NUMBER] with all numbers in list | with
out any duplication.

Example: di stinct([1, 2, 1, 3, 4, 4, 5])
returns [1, 2, 3,4, 5] .

Example: di stinct (fiel dval ue({...duedate},

I'i nkedl ssues("is cloned by"))) returns alist of
dates containing due dates of cloning issues, with only one
occurrence per due date, although more than one issue
may share the same due date.

Returns the NUMBER of numeric values in I.

Example: count ([1, 1, 2, 2]) returns4.

Example: count (subt asks()) - count (fi el dval ue
({...duedate}, subtasks())) returnsthe number of
sub-tasks with field "Due Date" unset.

Returns the NUMBER of times n appearsin I.
Example: count (1, [1, 1, 2, 2, 1, 0]) returns 3.

Returns the sum of NUMBER valuesin |.

Example: sum([1, 2, 3, 4, 5]) returns 15.
Example: sun(fi el dval ue({00025}, subtasks()))
returns the total time spent in minutes in all sub-tasks of
current issue.

Returns the arithmetic mean of NUMBER values
inl.

Example: avg([1, 2, 3, 4, 5]) returns 3.

Example: avg(fi el dval ue({00024}, |inkedl ssues
("is blocked by"))) returns the mean of remaining
times in minutes among blocking issues.

max (number list I)

min(number list I)

first(number list I)

last(number list I)

nthElement(num
ber list |, number n

)

getMatchingValue
(string key, string
list key_list,
number list value
_list)

getMatchingValue
(string key, string
list key_list,
number list value
_list)

sublist(number
list I, number inde
XxFrom, number in
dexTo)

indexOf(number e
lement, number
list 1)

sort(number list I,
order)

textOnNumberLi
st(number list nu

mbers, string text
_expression)

NUMBER [

NUMBER []

NUMBER []

NUMBER []

NUMBER []

NUMBER

STRING
NUMBER []

STRING []

NUMBER []

STRING []

NUMBER [

NUMBER

NUMBER []

NUMBER [

NUMBER []

STRING

Returns the maximum NUMBER value in I.
Example: max([1, 2, 5, 4, 3]) returns5.
Example: max(fi el dval ue({00024}, |inkedl ssues

("is blocked by"))) returns the maximum remaining
times in minutes among blocking issues.

Returns the minimum NUMBER valuein |.
Example:min([2, 1, 5, 4, 3]) returns1.

Example: mi n(fi el dval ue({00024}, Iinkedl ssues
("is blocked by"))) returns the minimum remaining
times in minutes among blocking issues.

Returns NUMBER of the first element in number

list1, or nulliflis an empty list.
Example: first([3, 2, 1, 0]) returns 3.

Returns NUMBER of the first element in number

list1, or nulliflis an empty list.
Example: 1 ast ([3, 2, 1, 0]) returnsO.

Returns NUMBER element at position n in

number list |, where n >=1 and n <= count(l). Returns null
if n is greater than the number of elements in .
Example: nt hEl erent ([5, 6, 7, 8], 3) returns?7.

Returns NUMBER in value_list that is in the
same position as string key is in key_list, or in case key
doesn't exist in key_list and value_list has more elements
than key_list, the element of value_list in position count
(key_list) + 1.

Example: get Mat chi ngVal ue(" Three", ["One",
“Two", "Three", "Four", "Five"], [1, 1+1,
3*1, 4, 4+1]) returns 3.

Returns NUMBER value in value_list that is in

the same position as numeric key is in key_list, or in case
key doesn't exist in key_list and value_list has more
elements than key_list, the element of value_list in
position count (key_list) + 1.

Example: get Mat chi ngVal ue(5, [1, 3, 5, 7,

9], [1, 1+1, 3*1, 4, 4+1]) returns 3.

Returns a NUMBER [] with elements in | from inde
xFrom index to indexTo index. Having indexFrom >=1
and indexFrom <= count(l) and indexTo >= 1 and
indexTo <= count(l) and indexFrom <= indexTo.
Example: sublist([1, 2, 3, 4, 5], 2, 4) returns
[2,3,4].

Returns the index of NUMBER value element in
number list |. Zero is returned when element is not found in |

Example: i ndexOf (1, [5, 2, 1, 4, 1]) returns 3.

Returns a with elements in | sorted in

specified order. Available orders are ASC (for ascending
order) and DESC (for descending order).

Example: sort ([2, 4, 3, 1], ASC) returns[1,2, 3,
4].

NUMBER []

Returns a STRING [] resulting of evaluating text_
expression against each of the numeric values in
argument numbers. Argument text_expression is an
expression that returns a string, where ” represents each
numeric value in argument numbers.

Example: t ext OnNunber Li st ([1, 2, 3, 4, 5],
substring("smle", 0, ")) returns string list ["s",
"sm", "smi", "smil", "smile"].

mathOnNumberL NUMBER [Returns a NUMBER [] resulting of evaluating math

ist(number list nu _time_expression against each of the numeric values in
mbers, number m argument numbers. Argument math_time_expression is
th_nme_expres a math/time expression, where * represents each numeric
sion) value in argument numbers.

Example: mat hOnNunber Li st ([1, 2, 3, 4, 5],
* 2) returns number list [2, 4, 6, 8, 10].

String lists

Overview

The String list data type is an ordered list of strings. This data type is returned, among others, by
functions that return values of string fields in a selection of issues (linked issues, sub-tasks, and subsets

).

Fixed values

A string list can also be written in literal form using the following format: [string, string, ...].

@ Example

A number list with 5 elements: ["Bl ue", "Green", "Yellow', "Orange", "Red"]

String list functions

The following functions are intended to build expressions that return string lists, strings or numbers.

Function Input Returned value
filterByCardinality STRING [] Returns a STRING [] in | whose cardinality (i.
(string list |, NUMBER e., the number of times it appears in list |) satisfies the
comparison comparison cardinality operator n. Available
operator operator, comparison operators: =, | =, <, <=, > and >= .
number n) Example: filterByCardinality(["tiger",
"tiger", "tiger", "tiger", "lion",
"lion", "lion", "cat", "cat", "lynx"], <,
3) returns["cat", "lynx"] .
Example: fil terByCardinality(fieldVal ue(%
{...conponents}, subtasks()), =, count

(subt asks())) returns a list with the Components
present in all sub-tasks, i.e., those components common
to all sub-tasks of current issue.

filterByValue STRING [] Returns a STRING [] in | satisfying the
(string list |, STRING comparison string_in_list operator s.

comparison Example: fi | t er ByVal ue(["John", "Robert",
operator operator, "Kevin", "Mark"], ~, "r") returns the list of
string s) string containing substring "r". i.e., [" Robert",

" Mar k"]

https://apps.decadis.net/display/AUTOMATION/Data+types

filterByPredicate(str
ing list I, boolean
expression predicate

)

append(string list I,
string list m)

union(string list I,
string list m)

except(string list I,
string list m)

intersect(string list I,
string list m)

distinct(string list I)

STRING []

Returns a STRING [] in | that validate predicate

. Argument predicate is a boolean expression, where "%

STRING []

STRING []

STRING []

STRING []

STRING []

is used for referencing string values in argument |.
Example: fi | t er ByPredi cat e(["book",

"rose", "sword"], length("% > 4) returns["s
word"] .

Example: fi |t er ByPredi cat e(["book",

"rose", "sword"], "%in %...sunmary} OR

"% in %...description}) returns a list with those
strings in first argument that also appear in issue Summ
ary or Description.

Returns a STRING [] with all strings in

arguments | and m. Duplicated string may appear in
output. Use function union(l, m) instead, if you want to
avoid repetitions.

Example: append([" bl ue", "red", "green"],
["red", "green", "yellow']) returns["bl ue",
"red", "green", "red", "green", "yellow'] .

Example: append(fi el dval ue(%. ..
fixVersions}, subtasks()), fieldValue(%
{...fixVersions}, linkedlssues("is

bl ocked by"))) returns a string list with Fix Version
/s of sub-tasks and blocking issues.

Returns a STRING [] with all strings in
argument | or in argument m without duplicated strings.
Example: uni on(["bl ue", "red", "green"],
["red", "green", "yellow']) returns["bl ue",
"red", "green", "yellow'] .

Example: uni on(fi el dval ue(%. . .
fixVersions}, subtasks()), fieldValue(%
{...fixVersions}, linkedlssues())) returns
the list of Fix Version/s selected among all sub-tasks
and linked issues.

Returns a STRING [] with all strings in

argument | which are not in argument m. Duplicated
strings in | may appear in output. Use function distinct()
to remove them if you need to.

Example: except ([" bl ue", "red", "green",
"black"], ["red", "green", "yellow']) return
s["blue", "black"] .

Example: except (fi el dval ue(%. . .
fixVersions}, subtasks()), fieldValue(%
{...fixVersions}, linkedlssues())) returns
the list of Fix Version/s in sub-tasks and not in linked
issues.

Returns a STRING [] with all strings in
argument | and m simultaneously.

Example: i nt ersect (["bl ue", "red",
"green", "black"], ["red", "green",
"yellow']) returns["red", "green"] .
Example: uni on(fi el dval ue(%. ..
fixVersions}, subtasks()), fieldValue(%
{...fixVersions}, linkedlssues())) returns
the list of Fix Version/s common to sub-tasks and
linked issues.

Returns a STRING [] with all strings in list |
without any duplication.

Example: di stinct (["blue", "green",
"yellow', "blue", "yellow']) returns["bl ue",
"green", "yellow'] .

Example: di stinct(fiel dvalue(%. ..

assi gnee}, subtasks())) returns the list of
assignees to sub-tasks, with only one occurrence per
user, although a user may have more than one sub-task
assigned.

count(string list 1)

count(string s,
string list I)

first(string list 1)

last(string list I)

nthElement(string
list I, number n)

getMatchingValue(s
tring key, string list k
ey_list, string list val
ue_list)

getMatchingValue(s
tring key, string list k
ey_list, string list val
ue_list)

sublist(string list I,
number indexFrom,
number indexTo)

indexOf(string elem
ent, string list 1)

sort(string list I,
order)

STRING []

STRING

STRING []

STRING []

STRING []

STRING []

NUMBER

STRING

STRING []

STRING

STRING []

STRING []

NUMBER

STRING

STRING []

STRING []

Returns the NUMBER of string values in I.
Example: count (["bl ue", "red", "blue",

"bl ack"]) returns 4 .

Example: count (di stinct(fieldValue(%...
conponent s}, subtasks()))) returns the number
of Components selected among all sub-tasks.

Returns the NUMBER of times s appears in |.
Example: count ("bl ue", ["blue", "blue",
"red", "red", "blue", "green"]) returns 3.
Returns the first element in STRING listl, or
nul | if | is an empty list.

Example: first(["blue", "red", "green"]) retu
rms " bl ue" .

Returns the first element in STRING listl, or
nul | if | is an empty list.

Example: | ast (["bl ue", "red", "green"]) retur
ns"green" .

Returns element at position n in STRING list|

, where n >= 1 and n <= count(l). Returns nul | ifnis
greater than the number of elements in I.

Example: nt hEl ement ([" bl ue", "red",
"green"], 2) returns"red" .

Returns STRING value in value_list that is
in the same position as string key is in key_list, or in
case key doesn't exist in key_list and value_list has
more elements than key_list, the element of value_list
in position count (key_list) + 1 .

Example: get Mat chi ngVal ue(" Spai n", ["USA",
"UK", "France", "Spain", "Germany"],
["Washi ngton", "London", "Paris",
"Madrid", "Berlin"]) returns"Madrid" .

Returns STRING value in value_list that is
in the same position as numeric key is in key_list, orin
case key doesn't exist in key_list and value_list has
more elements than key_list, the element of value_list
in position count (key_list) + 1.

Example: get Mat chi ngVval ue(8, [2, 4, 6, 8,
10], ["Washington", "London", "Paris",
"Madrid", "Berlin"]) returns"Madrid" .

Returns a STRING [] with elements in | from in
dexFrom index to indexTo index. Having indexFrom
>= 1 and indexFrom <= count(l) and indexTo >= 1 and
indexTo <= count(l) and indexFrom <= indexTo.
Example: subl i st(["red", "green", "blue",
"purple", "white"], 2, 4) returns["green",
"blue", "purple"] .

Returns the index NUMBER of string element
in string list |. Zero is returned when element is not
found in I.

Example: i ndexOf ("bl ue", ["red", "blue",
"green"]) returns 2 .

Returns a STRING [] with elements in |
lexicographically ordered. Available orders are ASC (for
ascending order) and DESC (for descending order).
Example: sort (["red", "blue", "green"],
ASC) returns ["bl ue", "green", "red"] .

textOnStringList(str STRING [] Returns a STRING [] resulting of evaluating tex

ing list strings, t_expression against each of the strings in argument str
string text_expressi ings. Argument text_expression is an expression that
on) returns a string, where ~%represents each string in

argument strings.

Example: t ext OnStri ngLi st (["al bert",
"riCHard", "MARY"], capitalizeWrdsFully
(%) returns [" Al bert", "Richard", "Mary"] .

mathOnStringList(s STRING [] Returns a NUMBER] resulting of evaluating ma
tring list strings, th_time_expression against each of the issues in
number math_tlme_ argument issues. Argument math_time_expression is
expression) a math/time expression, where *%represents each

string in argument strings.

Example: mat hOnStri ngLi st (["a", "ab",

"abc", "abcd", "abcde"], |ength("%) returns
[1, 2, 3, 4, 5].

Examples
Input Output
["red", "blue", "green"] A string list with the names of 3 colors
fieldvalue(%...summary}, Returns the list of summaries of sub-tasks of the
subt asks()) current issue
toStringList(%...conponents}) Returns a list with the names of the components
of the current issue.
di stinct(toStringList(toString Returns a string list with all the components
(fieldvalue(%...conponents}, present in the sub-tasks of the current issue witho
subtasks())), ",")) ut duplicates.

List operators

General Information

There are three different data types that return lists. i.e., types that are based on lists, or ordered
collections of elements.

These data types are:

® |ssue lists ISSUE []
® Number lists NUMBER]
® String lists STRING []

List Operators

There are four available operators for working on list-based data types:

Operator Behavior Examples
| APPEND m | Returns a list with elements in | followed by [1, 2, 3] APPEND [3, 4, 4] =
elements in m, therefore the number of [1, 2, 3, 3, 4, 4]
elements is the sum of the number of
elements in [and m. ["blue", "red", "red"]
Order is respected. It may contain repeated APPEND ["red", "green"] =
elements. ["blue", "red", "red",
"red", "green"]

subt asks() UNI ON subt asks() ret
urns a list containing twice all the sub-
tasks of current issue.

https://apps.decadis.net/display/AUTOMATION/Data+types#Datatypes-types
https://apps.decadis.net/display/AUTOMATION/Issue+lists
https://apps.decadis.net/display/AUTOMATION/Number+lists
https://apps.decadis.net/display/AUTOMATION/String+lists

| UNI ONm Returns a list with elementsin | and elementsm [1, 2, 3] UNION [3, 4, 4] =
without repetitions. [1, 2, 3, 4]
Order is respected.
["blue", "red", "red"] UN ON
["red", "green"] = ["Dblue",
"red", "green"]

I'i nkedl ssues() UNI ON

subt asks() returns a list with linked
issues and sub-tasks of current issue
without repetitions.

I NTERSE | Returns a list with the elements present in [1, 1, 2, 3] INTERSECT [1,
CTm both lists simultaneously. Returned list 3, 5] =1, 3]

doesn't contain element repetitions.

Order is respected. ["red", "blue", "blue"]

| NTERSECT ["bl ue", "yellow',
"yellow'] = ["blue"]

I'i nkedl ssues() | NTERSECT
subt asks() returns a list with those
sub-tasks which are also linked to
current issue.

| EXCEPT m | Returns a list with elements in | whicharenot ' [1, 2, 2, 3, 3] EXCEPT |2,
present in list m. Returned list doesn't contain ' 5, 6] = [1, 3]
element repetitions.
Order is respected. ["red", "red", "blue",
"blue", "green"] EXCEPT
["blue", "yellow'] = ["red",
"green"]

i nkedl ssues() EXCEPT

subt asks() returns a list with linked
issues which are not sub-tasks of
current issue.

® | and m are both lists of the same data type: number, string or issues.

® All operators are case insensitive, i.e., they can also be written in lower case: append
,union,intersect and except .

® There are 4 equivalent and homonym functions available for each type of list, and its
behavior is exactly equivalent to that of its corresponding operator. This way, you can
choose to use operators or functions according to your preference. Although
operators yield shorter expressions and with fewer parentheses, the usage of
functions produces a more functional consistent syntax

Precedence Order and Associativity

OPERATORS PRECEDENCE ASSOCIATIVITY
| 1 NTERSECT m 1 (highest) Left-to-Right
| UNI ON'm, | EXCEPT m, | APPENDm | 2 (lowest) Left-to-Right

Selectable fields

Overview
Selectable fields are fields with a limited domain or set of options or possible values.
These fields includes:

® Select

Versions

Labels

Multi Select
Radio Button
Security Level
Checkboxes
Components

Multi User Picker
Multi Group Picker
Issue Pickers
Attachments

Available functions

Function

numberOfSele
ctedltems(%f{...
somefield}) :
number

numberOfAvai
lableltems(%
{...somefield}) :
number

availableltems
(%H...
somefield}) :
string list

availableltems(
%f...
somefield},
string option) :
string list

0

allAvailablelte
ms (%f...
somefield}) :
string list

allAvailablelte
ms(%f...
somefield},
string option) :
string list

Input

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

Returned value

Returns the of selected items in select or
multiselect field with field code %{...somefield}.

NUMBER

Returns the of available options in select
or multiselect field with field code %{...somefield}. It's
equivalent to count (avai |l abl el tenms(%. . .

sonefi el d})) . Disabled options are discarded.

NUMBER

Returns a with available options in select

or multiselect field with field code %{...somefield}. Disabled
options are discarded.

Example: avai | abl el t ens(% 00103}) returns a string list
with all security levels available for the project and current
user.

STRING []

Returns a STRING [] with all available child options

in cascading or multilevel cascading field with ID %f...
somefield}, and for option parent option. In the case of
multilevel cascading fields, a comma separated list of options
should be entered. Disabled options are discarded.

Returns a STRING [] with all available options in

select or multiselect field with field code %f{...somefield}.
Disabled options are included.

Example: avai | abl el t ens(% 00103}) returns a string list
with all security levels available for the project and current
user.

Returns a with all available child options

in cascading or multilevel cascading field with ID %({...
somefield}, and for option parent option. In the case of
multilevel cascading fields, a comma separated list of options
should be entered. Disabled options are included.

STRING []

Users, groups and roles

Overview

The expression parser offers multiple functions to manage user-, group- and role-related information.

Available functions

Function

Input

Returned value

isInGroup(stri
ng user_name
, string group_
name)

isInRole(string
user_name,
string role_na
me)

isInRole(string
user_name,
string role_na
me, string proj
ect_key)

isActive(string
user_name)

STRING

STRING

STRING

STRING

Checks if a user is in a group.

Argument user_name can also be a comma separated list
of user names, group names or role names. In that case
the function will return true only if all users in the list, groups
of the list, and in the roles of the list, are in the group in the
second argume{nt.

(D Example

islnGoup(%...assignee}, "jira-
devel opers") returns true if Assignee in in
group jira-developers.

Checks if a user or group of users plays a role in current
project. BOOLEAN

Argument user_name can also be a comma separated list
of user names, group names or role names. In that case
the function will return true only if all users in the list, groups
of the list, and in the roles of the list, are in project role in the
second argument, for current project.

G) Example

islnRole(%...reporter}, "Testers") retu
rns true in Reporter is in project role Testers.

Checks if a user or group of users plays a role in a certain
project. BOOLEAN

Argument user_name can also be a comma separated list
of user names, group names or role names. In that case
the function will return true only if all users in the list, groups
of the list, and in the roles of the list, are in role in the second
argument, for the project in the third argument.

G) Example

islnRol e(%...currentUser},

"Devel opers", "CRM') returns true in Current
user is in project role Developers in project with
key "CRM".

Checks if a user is active.

Argument user_name can also be a comma separated list
of user names, group names or role names. In that case
the function will return true only if all users in the list, groups
of the list, and in the roles of the list, are active.

(D Example

i sActive(%...conmponentLeads}) returns
true if all users who are component leaders in
current project are active.

(string user_n
ame)

userFullName STRING []
(string list user
_names)

ng user_name)

userEmail(stri STRING []
ng list user_na
mes)

er(string fullNa
me)

ail(string email)

string property
Name, string u
serName)

Returns a _ with the full name of the user in

argument user_name.

Argument user_name is a string with a user name, not to be
confused with user full name.

G) Example

user Ful | Name(% . .. current User}) returns
the user's full name of current user.

Returns a STRING [] with the full names of the users
in argument user_names.

Argument user_names is a string list with user names, not to
be confused with users full names.

(D Example

user Ful | Nane(toStringList(%...
wat cher s})) returns a list with the users full
names of current issue's watchers.

Returns a _ with the email of the user in

argument user_name.

Argument user_name is a string with a user name, not to be
confused with user full name.

(D Example

userEmail (% ...currentUser}) returns the
email of current user.

Returns a STRING [] with the emails of the users in
argument user_names.

Argument user_names is a string list with a user names, not
to be confused with users full names.

@ Example

user Emai | (toStringList(%...
wat cher s})) returns a list with the emails of
current issue's watchers.

Returns a _ with the name of a user whose
full name is equal to argument fullName.

Returned value is a string with a user name.

Returns a STRING [] with the user names of those
users with emails equal to argument email.

In case that only one user is expected, function first(string
list) can be used to extract a string with its user name.

Returns the _ value of the user property

with name propertyName which belongs to user with user
name userName.

If the user doesn't have the property, " " will be returned.

userProperty(
string property
Name, string

list userNames

)

usersinRole(st
ring projectRo
leName)

usersinRole(st
ring projectRo
leName, string
projectKey)

usersinGroup
(string groupN
ame)

rolesUserPlays
(string userNa
me)

rolesUserPlays
(string userNa
me, string proj
ectKey)

groupsUserB
elongsTo(strin
g userName)

defaultUserFo
rRole(string pr
ojectRoleName

)

defaultUserFo
rRole(string pr
ojectRoleName
, string project
Key)

lastAssigneel
nRole(string pr
ojectRoleName

)

lastAssigneel
nRole(string pr
ojectRoleName
, string issueK
ey)

Returns the STRING [] of values of the user property

with name propertyName in all the users whose names are
contained in userNames.

The output will contain as many strings as users have the
property set.

Returns the of user names (not be

confused with full user name) of those active users playing
project role with name projectRoleName in current issue's
project. Parameter projectRoleName can be a comma
separated list of project role names, returning the users that
play any of the project roles.

STRING []

Equivalent to the previous function that returns a
STRING [] with extra argument projectKey for
selecting the project argument projectRoleName refers to.

Returns the STRING [] of user names of those
active users in group with name groupName.

Parameter groupName can be a comma separated list of
group names, returning the users that belong to any of the
groups.

Returns the STRING [] of role names of those

project roles the user with name userName plays in current
project.

Parameter userName can also be a comma separated list of u
ser names, group names and project role names, returning
the list of project roles for those users represented by input
argument.

Returns the STRING [] of role names of those

project roles the user with name userName plays in project
with key projectKey.

Parameter userName can also be a comma separated list of u
ser names, group names and project role names, returning
the list of project roles for those users represented by input
argument.

Returns the STRING [] of group names of those
groups the user with name userName belongs to.

Parameter userName can also be a comma separated list of u
ser names, group names and project role names, returning
the list of project roles for those users represented by input
argument.

Returns the of the user name of the Assi

gn to project role project role with name projectRoleName
in current issue's project, or " " if no default user is defined for
the project role.

Equivalent to the previous _ function but

with extra argument projectKey for selecting the project
argument projectRoleName refers to.

Returns the of user name of the last user

who had current issue assigned, and currently plays project
role with name projectRoleName in current issue's project, or
"" if current issue was never assigned to a user currently in
the project role.

Returns the_ of user name of the last user

who had issue with key issueKey assigned, and currently
plays project role with name projectRoleName in current
issue's project, or nul | if current issue was never assigned to
a user currently in the project role.

leastBusyUse STRING
rinRole(string

projectRoleNa

me)

leastBusyUse STRING
rinRole(string

projectRoleNa

me, string proj

ectKey)

leastBusyUse STRING
rinRole(string

projectRoleNa

me, string proj

ectKey, string j

qlQuery)

nextUserinGr STRING
oup(string gro

upName,

string queueN

ame)

Versions

Overview

Returns the name of the active user playing project role with
name projectRoleName in current issue's project, and has
the lower number of issues with resolution empty assigned; or
"" if there isn't any user in the project role. Parameter project
RoleName can be a comma separated list of project role
names, returning the least busy users among the project
roles.

{D Example

| east BusyUser | nRol e(" Devel opers") return
s the STRING user playing role Develop

ers in current project with the least number of
unresolved issues in all the Jira instance assigned.

Equivalent to the previous function but with extra argument pr
ojectKey for selecting the project argument projectRoleName
refers to.

Example: | east BusyUser | nRol e(" Devel opers",

"CRM') returns STRING of the user playing role D
evelopers in project with key CRM with the least number of
unresolved issues in all the Jira instance assigned.

Equivalent to the previous function but with extra argument jql
Query, used for restricting the issues to be considered to pick
the least busy user as a STRING

{D Example

| east BusyUser | nRol e("Devel opers", %
{...projectKey}, "project =" + %...
proj ect Key}) returns the user playing role Devel
opers in current project, with the least number of
unresolved issues in current project assigned.

Returns the STRING name of the next active user

in group with name groupName, for a round-robin queue with
name queueName.

The string queueName is an arbitrary name. The queue is
automatically created the first time a queue is used in a
function call. Each time the function is called on the same pair
of arguments (gr oup, queue) , a different user in the
group is returned. The queue can be used in different
transitions of the same or different workflows within the same
Jira instance. nul | is returned if group is empty.

{D Example

next User I nGroup("jira-devel opers",
"code-revi ew queue") returns the username
of the next user in group jira-developers for round-
robin queue code-review-queue. Each time the
function is called with the same pair of arguments,
a different username is returned.

The expression parser offers multiple functions to retrieve version related field values.

Available functions

Function

unreleasedVe
rsions()

unreleasedVe
rsions(string p
rojects)

releasedVersi
ons()

releasedVersi
ons(string proj
ects)

releaseDates(
string versions)

releaseDates(
string versions
, string projects

)

startDates(stri
ng versions)

startDates(stri
ng versions, st
ring projects)

archivedVersi
ons()

archivedVersi
ons(string proj
ects)

Input

STRING

STRING

STRING

STRING

STRING

STRING

STRING

Returned value

Returns a STRING [] with unreleased version names
of current issue's project. Returned versions may be archived.
Example: t oStringLi st(%...versions}) any in

unr el easedVer si ons() validates that at least one affected
version is unreleased.

Returns a with unreleased version names

of projects in argument projects. Returned versions may be
archived. Arguments projects is a comma separated list of pr
oject keys or project names.

STRING []

Returns a STRING [] with released version names of
current issue's project. Returned versions may be archived.
Example: toStringList(%...fixVersions}) in

rel easedVer si ons() validates that all fixed versions are
released.

Returns a with released version names of

projects in argument projects. Returned versions may be
archived. Arguments projects is a comma separated list of pr
oject keys or project names.

Example: t oStringLi st (*%...fixVersions}) in

rel easedVersi ons("% . .. proj ect Key}) validates that
all fixed versions of a foreign issue are released.

STRING []

Returns a NUMBER [] with the release dates for

versions in string versions for current issues project.
Parameter versions is a comma separated list of version
names.

Example: r el easeDates(% ... fi xVersions}) returns
the list of release dates for Fix Version/s.

Returns a with the release dates for

versions in string versions for projects in parameter projects.
Parameter versions is a comma separated list of version
names. Parameter projects is a comma separated list of
project keys or project names.

Example: r el easeDates(% ... versions}, "CRM') retu
rns the list of release dates for affected versions for project
with key "CRM". .

NUMBER []

Returns a with the start dates for versions
in string versions for current issues project. Parameter versio

ns is a comma separated list of version names.

NUMBER []

Example: startDates(%...fixVersions}) returnsthe
list of start dates for fixed versions.

Returns a with the start dates for versions

in string versions for projects in parameter projects.
Parameter versions is a comma separated list of version
names. Parameter projects is a comma separated list of
project keys or project names.

NUMBER []

Example: startDates(%...versions}, "CRM) return
s the list of start dates for affected versions for project with
key " CRM ".

Returns a with released version names of
current issue's project. Returned versions may be archived.

STRING []

Returns a with released version names of

projects in argument projects. Returned versions may either
released or unreleased. Arguments projects is a comma
separated list of project keys or project names.

STRING []

latestRelease
dVersion()

latestRelease
dVersion(string
projects)

latestRelease
dUnarchivedV
ersion(string p
rojects)

earliestUnrele
asedVersion()

earliestUnrele
asedVersion(s
tring projects)

earliestUnrele
asedUnarchiv
edVersion()

earliestUnrele
asedUnarchiv
edVersion(stri
ng projects)

unreleasedVe
rsionsBySequ
ence()

Available
since version
1.1.0

releasedVersi
onsBySequen
ce()

Available
since version
1.1.0

STRING

STRING

STRING

STRING

Returns STRING with the name of the latest
released version in current issue's project.

Example: | at est Rel easedVersion() in

ar chi vedVer si ons() validates that the latest released
version in current issue's project is archived.

Returns STRING [] with the name of the latest
released version among projects in argument projects.

Returned versions may either released or unreleased.
Arguments projects is a comma separated list of project
keys or project names.

Returns STRING] with the name of the latest
released version excluding archived ones for projects in
argument projects. Returned versions may either released or
unreleased. Arguments projects is a comma separated list of
project keys or project names.

Returns STRING with the name of the earliest
unreleased version in current issue's project.

Example: ear | i est Unr el easedVersion() not in
ar chi vedVer si ons() validates that earliest unreleased
version in current issue's project is not archived.

Returns STRING [] with the name of the earliest
unreleased version among projects in argument projects.
Returned versions may either released or unreleased.
Arguments projects is a comma separated list of project
keys or project names.

Returns STRING with the name of the earliest

unreleased version in current issue's project excluding
archived ones.

Returns STRING [] with the name of the earliest
unreleased version excluding archived ones for projects in
argument projects. Returned versions may either released or
unreleased. Arguments projects is a comma separated list of
project keys or project names.

Returns a STRING [] with the unreleased versions in

the current project with the default order. Only non-archived
versions are returned. The first version in the list is the
lowermost version in the version table.

Returns a STRING [] with the released versions in
the current project with the default order. Only non-archived
versions are returned. The first version in the list is the
lowermost version in the version table.

Historical field values

Overview

The expression parser offers multiple functions to retrieve historical field values.

Functions for accessing historical field values are available for the following fields:

All Custom Fields
Summary
Description
Assignee

Reporter

Due date

Priority

Labels

Available functions

Function

previousV
alue(%f...
somefield})

previousV
alue({...
somefield})

previousV
alue(%f...
somefield.

i}

fieldHistory
(%...
somefield})

fieldHistory
{...

somefield})

fieldHistory
(%...
somefield.

i)

hasChang
ed(%f(...
somefield})

hasChang
ed({...
somefield})

Issue status

Resolution

Environment
Fix version/s
Affects version/s

Components
Security level

Input

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

Returned value

Returns a STRING with the previous value of a field

for current issue. It will return nul | if field was previously
uninitialized.

Returns a NUMBER with the previous value of a numeric

or date field for current issue. It will return nul | if field was
previously uninitialized.

Returns a STRING with the previous value of a cascad

ing or multi-cascading select field for current issue at level i
(with root level = 0). It will return nul | if field was previously
uninitialized.

Returns a STRING [] with all the values that a field has

ever had in the past for current issue. Values appear in the list in
ascending ordered by setting time, i.e., older value has index 1,
and most recent value has index count (string_list) .
Uninitialized field statuses are represented by empty strings.

Returns a NUMBER [] with all the values that a numeric

or date-time field has ever had in the past for current issue.
Values appear in the list in ascending ordered by setting time, i.e.,
older value has index 1, and most recent value has index count
(nunber _Il'i st) . Uninitialized field statuses are not represented.

Returns a STRING [] with all the values that a cascading

or multi-cascading select field has ever had in the past for
level i (with root level = 0) in current issue. Values appear in the
list in ascending ordered by setting time, i.e., older value has
index 1, and most recent value has index count (string_list)
. Uninitialized field statuses are represented by empty strings.

Returns true only if field has changed in

current transition.

Function hasChanged(field_code) is used when we set a
validation that is incompatible with a condition in a same
transition, typically when validating a value entered in the
transition screen. When Jira evaluates the validations in a
transition, it also reevaluates the conditions, and if they are not
satisfied an Action X i s invalid error message is shown
and the transition is not executed.

Example: Let's suppose we have a boolean condition like {. . .
duedat e} = null (i.e., Due date = null) in a transition, so that
it's only shown when Due date is empty. This transition also has
a transition screen containing field Due date, and a boolean
validation { . . . duedat e} != null ,in order to make Due date
required in the transition.

The configuration described above will not work, since both
condition and validation are mutually incompatible. We can fix it
replacing the boolean condition with {. . . duedat e} = nul |

OR hasChanged(% . .. duedate}) .

Returns true only if numeric or date-time

field field has changed in current transition.

hasChang
ed({...
somefield.

i)

FIELD

Miscellaneous

Overview

Returns true only if cascading select field

has changed for level i (with root level = 0) in current transition.

The expression parser offers multiple functions that cannot easily be categorized.

A comprehensive list can be found below.

Available functions

Function

projectProperty(st
ring property_na
me)

projectProperty(st
ring property_na
me, string project
_key)

projectPropertyE
xists(string proper
ty_name)

projectPropertyE
xists(string proper
ty_name, string pr
oject_key)

isAClone()

Input

STRING

STRING

STRING

STRING

Returned value

Returns a STRING with the value of project
property with name property_name in current issue's
project. nul | is returned if project property doesn't exist.
Example: proj ect Property

(" maxNunber Of Reopeni ngs") returns " 3" , provided
there is a string { maxNunber Of Reopeni ngs=3} in the
description of current issue's project.

Returns a STRING with the value of project
property with name property_name in project with key pro
ject_key. nul | is returned if project property doesn't
exist.

Example: proj ect Property

(" maxNunber Of Reopeni ngs", "CRM') returns"3" ,
provided there is a string { mexNunmber Of Reopeni ngs=3}
in the description of project with key CRM.

Returns true only if there is a project
property with name property_name in current issue's
project, i.e., if project's description contains a string like {pr
operty_name=value}.

BOOLEAN

Example: pr oj ect Propert yExi sts

(" maxNunber Of Reopeni ngs") returns t r ue only if
there is a string like { maxNunber Of Reopeni ngs=x} in
the description of current issue's project.

Returns true only if there is a project

property with name property_name in project with key pro
ject_key.

(D Example

proj ect PropertyExi sts

(" maxNunber O Reopeni ngs", "CRM') retu
rns t r ue only if there is a string like { maxNunb
er Of Reopeni ngs=x} in the description of
project with key CRM

Returns BOOLEAN true only if current issue is a

clone of another issue. An issue is a clone of another
issue if it's being created by Jira "Clone" operation, or
has issue links of type "clones". This function if useful
for bypassing validations in transition Create Issue when
the issue is being created by a clone operation.

allComments()

allComments(strin STRING
g issue_keys)

allComments(issu ISSUE []
e listl)

allCommenters()

allCommentCreat

ors()

allCommentCreat STRING
ors(string issue_k

eys)

allCommentCreat STRING []

ors(string list I)

allCommenters(st STRING
ring issue_keys)

allCommenters(is
sue list)

Returns a STRING [] with all the comments in
current issue in ascension order by creation date.

Returns a STRING [] with all the comments in

issues with keys in issue_keys, in order of appearance in i
ssue_keys, and by creation date in ascension order.
Argument issue_keys is a comma separated list of issue
keys.

(D Example

al | Cooments(% ... parentlssuekey}) ret
urns parent issue's comments.

Returns a STRING [] with all the comments in

issues in |, in order of appearance in |, and by creation
date in ascension order.

Example: al | Conment s(subt asks()) returns all the
comments in all the sub-tasks of current issue.

Returns a STRING [] with the user names of

comment authors and updaters in current issue, in
ascension order by commenter's actuation time. The
same user appears in the output as many times as the
comments the user created and updated.

Returns a STRING [] with the user names of

comment creators in current issue, in ascension order by
commenter's actuation time. A same user appears in the
output as many times as comments has created. For
anonimous comments an empty string (" ") is returned.

Returns a STRING [] with the user names of

comment creators in issues with keys in issue_keys, in
order of appearance in issue_keys, and in ascension
order by commenter's actuation time. A same user
appears in the output as many times as comments has
created. For anonymous comments an empty string ("")
is returned.

Returns a STRING [] with the user names of

comment creators of issues in |, in order of appearance in |
, and in ascension order by commenter's actuation time. A
same user appears in the output as many times as
comments has created. For anonimous comments an
empty string (" ") is returned.

Returns a STRING [] with the user names of

comment authors and updaters of issues with keys in issu
e_keys, in order of appearance in issue_keys, and in
ascension order by commenter's actuation time. Argument
issue_keys is a comma separated list of issue keys.

(D Example

al | Cooments(% . . . parent | ssuekey}) ret
urns a string list with the user names of
comment authors of parent issue.

Returns a STRING [] with the user names of

comment authors and updaters of issues in | in ascension
order by actuation time, in order of appearance in |, and in
ascension order by commenter's actuation time.

Example: al | Comment er s(1 i nkedl ssues("i s

bl ocked by")) returns a list with all the commenters
and comment updaters for linked issues blocking current
issue.

usersWhoTransiti
oned(string origin
_status, string des
tination_status)

usersWhoTransiti
oned(string origin
_status, string des
tination_status,
string issue_key)

timesOfTransition
(string origin_stat
us, string destinat
ion_status)

timesOfTransition
(string origin_stat
us, string destinat
ion_status, string i
ssue_key)

componentLeader
(string component
_name)

STRING

STRING

STRING

STRING

STRING

Returns a STRING [] with the names of the

users who transitioned current issue from origin_status
to destination_status, order ascending by time. An
empty string as argument is interpreted as any status.

{D Example

| ast (user sWhoTr ansi ti oned(" Open",
"I'n Progress")) returns the name of the
user who executed transition "Start Progress”
more recently.

Returns a STRING [] with the names of the users

who transitioned current issue from origin_status to desti
nation_status, order ascending by time. An empty string
as argument is interpreted as any status.

{D Example

count (user sWhoTr ansi ti oned(" Open",
"I'n Progress", %...

par ent | ssuekey})) returns the number of
times transition " Start Progress" has been
executed in parent issue.

Returns a NUMBER [] with the times when current
issue was transitioned from origin_status to destination_
status, order ascending by time. An empty string as
argument is interpreted as any status.

{D Example

last(timesOf Transition("",
"Resol ved")) returns the most recent time
when the issue was resolved.

Returns a NUMBER [] with the times when issue

with key issue_key was transitioned from origin_status
to destination_status, order ascending by time. An
empty string as argument is interpreted as any status.

(D Example

first(usersWoTransitioned
("Cosed", "", %A...

par ent | ssuekey})) returns the first time
when parent issue was reopened.

Returns the user name of the component lead with name
component_name in current issue's project as

STRING . This function also admits a comma
separated list of components, and returns a comma
separated list of user names. Output will contain repeated
user names if a same user is leader of more than one
component.

{D Example

conponent Leader (% . . . conponent s}) ret
urns a comma separated list with the user
names of the leaders of current issue's
components.

componentLeader STRING Returns a the user name of the component lead with

(string component name component_name in project with key project_key
_name, string proj as STRING . This function also admits a
ect_key) comma separated list of components, and returns a

comma separated list of user names. Output will contain
repeated user names if a same user is leader of more
than one component.

@ Example

conponent Leader ("Web Portal ",

" CRM'") returns the user name of the leader of
the component with name Web Portal in
project with key CRM.

issuelDFromKey(STRING Returns a STRING of the internal ID of issue

string issue_key) with key issue_key. This function also admits a comma
separated list of issue keys, and returns a comma
separated list of internal IDs.

@ Example

i ssuel DFr onKey (" CRM 1") returns " 10001"

issueKeyFromID(STRING Returns a STRING of the issue key of issue

string issue_ID) with internal ID issue_ID. This function also admits a
comma separated list of issue IDs, and returns a comma
separated list of issue keys.

@ Example

i ssuel DFronKey("10001") returns " CRM
1" .

projectKeys() Returns a STRING [] with all the project keys in
the JIRA instance.

projectKeys(string STRING Returns a STRING [] with the project keys of

category) those projects that belong to project category with name ¢
ategory.

projectName(string STRING Returns a STRING with the name of the

project_key) project with key project_key.

p(ojectC_ategory(s STRING Returns a STRING with the category of the

tring project_key) project with key project_key.

Functions to temporarily store and retrieve values

Function Returned value

setBoolean(string variable_n = Creates a variable named variable_name for storing a boolean
ame, boolean value) : value, and assigns it a value, which is also returned in order to be
boolean used within an expression.

Example: set Bool ean(" nyBool ean", true)

getBoolean(string variable_n | Returns the value stored in a boolean variable named variable_name
ame) : boolean , which was previously created using the setBoolean() function.

Example: get Bool ean(" nyBool ean")

setNumber(string variable_n
ame, number value) : number

getNumber(string variable_n
ame) : number

setString(string variable_na
me, string value) : string

getString(string variable_na
me) : string

setNumberList(string variabl
e_name, number list value) :
number list

getNumberList(string variabl
e_name) : number list

setStringList(string variable_
name, string list value) :
string list

getStringList(string variable_
name) : string list

setlssuelList(string variable_
name, issue list value) : issue
list

getlssueList(string variable_
name) : issue list

Creates a variable named variable_name for storing a number, and
assigns it a value, which is also returned in order to be used within
an expression.

Example: set Nurber (" nyNunber ", 100)

Returns the value stored in a numeric variable named variable_name
, which was previously created using the setNumber() function.

Example: get Nunber (" nyNunber ")

Creates a variable named variable_name for storing a string, and
assigns it a value, which is also returned in order to be used within
an expression.

Example: set String("nyString","Hello Wrld!'")

Returns the value stored in string variable named variable_name,
which was previously created using the setString() function.

Example: get Stri ng("nyString")

Creates a variable named variable_name for storing a number list,
and assigns it a value, which is also returned in order to be used
within an expression.

Example: set Nurber Li st (" myNunberList",[1, 2, 3])

Returns the value stored in number list variable named variable_name
, which was previously created using the setNumberList() function.

Example: get Nunber Li st (" myNunber Li st")

Creates a variable named variable_name for storing a string list, and
assigns it a value, which is also returned in order to be used within
an expression.

Example: set Stri ngLi st ("nmyStringList",["Hello",
World"])

Returns the value stored in string list variable named variable_name,
which was previously created using the setStringList() function.

Example: get Stri ngLi st ("nmyStringList")
Creates a variable named variable_name for storing an issue list,
and assigns it a value, which is also returned in order to be used

within an expression.

Example: set | ssueLi st (" nmyl ssueLi st", ["KEY-1", "KEY-
2"])

Returns the value stored in issue list variable named variable_name,
which was previously created using setlssueList() function.

Example: get | ssueLi st (" nmyl ssueLi st")

	Expression parser 201 - All functions

