
Expression parser 101
Introduction
The provides and to Automation Toolbox for Jira expression parser over 200 functions operators re

, and from , , , and .ad manipulate filter data Jira issues users groups projects more

Among the long list of functionalities, the parser functions support , setting and/or updating field values
issue , date and time , string and the execution of filtering calculations manipulation mathematical

.operations

The expression parser has been in constant development since 2009 when it was first introduced in Jira
. Since that time, the expression parser has seen constant development, Workflow Toolbox

improvement, and extended functionality.

Main Features
The expression parser has two major core functionalities:

Extend accessibility to
issue
system
project
version
component
and user through the use of data Virtual Fields

Provide a set of and tooperators functions
read
filter
extract
manipulate
write
update related data

Field codes and usage

Overview

One of the most important features of is the easy accessibility to Jira data Automation Toolbox for Jira
stored in system fields, custom fields and a significant number of other, virtual fields that are made
available by the implementation. You can access, validate, do Automation Toolbox for Jira
mathematical calculations and manipulate the values found in these fields through the use of .field codes
 These codes are unique identifiers (keys) to all available fields.

Automation Toolbox for Jira uses in , , , and : field codes triggers conditions selectors actions

normal custom fields
system fields
parent fields available to all sub-tasks
issue, project and user properties

Field codes are not only used as unique field identifiers, but they are also an important safety feature for
the Jira instance. Custom fields, for instance, can be renamed and the names do not have to be unique,
but using field codes make the fields you use in your rules immune to Automation Toolbox for Jira
renaming.

You can choose the appropriate field codes by using the drop-down lists that Automation Toolbox for
 makes available wherever can be used. Jira expressions

Field code notation

On this page

Introduction

Main Features

Field codes and usage

Overview

Field code notation

Field codes:

STRING vs.

NUMBER

Field codes in the

documentation

Virtual fields

Parsing modes

General

Information

Parsing modes

overview

Functions and operators

Functions

Operators

All can be found here: full list of supported functions Expression parser 201 - All
functions

https://apps.decadis.net/display/AUTOMATION/Expression+parser+201+-+All+functions
https://apps.decadis.net/display/AUTOMATION/Operators
https://apps.decadis.net/display/JWT/Jira+Workflow+Toolbox
https://apps.decadis.net/display/JWT/Jira+Workflow+Toolbox
https://apps.decadis.net/display/AUTOMATION/Automation+triggers
https://apps.decadis.net/display/AUTOMATION/Automation+conditions
https://apps.decadis.net/display/AUTOMATION/Automation+selectors
https://apps.decadis.net/display/AUTOMATION/Automation+actions
https://apps.decadis.net/display/AUTOMATION/Expression+parser+201+-+All+functions
https://apps.decadis.net/display/AUTOMATION/Expression+parser+201+-+All+functions

Depending on the in which they are being used, field codes will contain a prefix following this context not
: .ation { . }origin field/data

Available (or) in Automation Toolbox for Jira are:contexts origins

Context Description

Trigger The , , , that the execution of issue user version component or project event triggers
the .rule

Selector The . (e.g. an issue returned by a JQL issue currently being processed by the selector
query).

 Selectors usually hold multiple issues. They will processed iteratively one by one.

System Some data does (e.g. the or the not have an issue context currently logged in user sy
)stem date and time

The , denoting the (where the data should be), is a referential part of prefix origin read from / written to
the field code and whenever you select a field from a dropdown list will be inserted into the expression
(as shown below).

Your browser does not support the HTML5 video element

Here are some examples:

%{ }trigger.issue.description
%{ . }trigger.parent summary
%{ . . }trigger project lead
%{ . } selector.issue cf10021
%{ . }system currentUser

Field codes for Jira standard or system fields will display the attribute in a legible form like %{trigger.
.issue.summary}

Field codes: vs. STRING NUMBER

Field codes must always be enclosed by (or braces) but if they are used for , curly brackets text-strings
the brackets must be preceded by . a percent sign %

NUMBER or can be referenced as numbers using the following notation: Date-Time fields {so

menumberfield}. (no preceding % sign)

STRING Any field type or data type is susceptible of being transformed to text, so any field
 using the following notation: .can be referenced as a text-string value %{somefield}

Cascading Select or Multi-Cascading Select fields, where i is the index that represents the level to be
accessed. (is used for base level) are notated as .i = 0 %{somefield.i}

Field codes in the documentation

All selected will be notated like this where custom fields %{trigger.issue.cfnnnnn} nnnnn
contains the Jira . custom field id
Once an expression has been saved, the real name will be displayed in the configuration
element.

The purpose of using the cfnnnnn notation is quite simple - .custom fields can be renamed

A full list of available data types .can be found here

https://apps.decadis.net/display/AUTOMATION/Automation+triggers
https://apps.decadis.net/display/AUTOMATION/Data+types

Wherever field codes are used in the documentation they will be notated with instead three periods (...)
of prefixes.

%{...summary}
%{...cf10021}
 {...duedate}

Example of using field codes

The example below shows and expression usage in a Boolean Condition.

Click on Select field and then

1 - start typing the name of the field you wish to insert
 - click on one of the fields provided in the drop-down list2

The chosen field code will then be inserted into your parser expression where you can then enhance the
expression with more
fields or any other methods the expression parser allows.

The expression syntax will be evaluated as you create the expression. If the syntax is correct, a green
check circle will appear.

In the above examples, we've chosen to add a Boolean Condition validating that the of the Project key
issue being processed is not (!=) TEST.

After you the function, the real field names will be displayed in the rule element.save

In contrast to system or ATJ special virtual fields (which cannot be renamed), will be custom fields
inserted into an expression with
a different notation as seen below:

In this example, we've chosen the custom field "Sale Amount" to evaluate. In the expression, it is notated
as . is cf10900 10900
the unique field id in the Jira configuration.

Once the element is saved, it appears with its real name.

If at some point the field should be renamed i.e. Sale Amount Net, the expression will stay the same, but
the element will now
display the new name and the rule does not need to be updated.

For more detailed information on field availability and parser usage, please see the section on Virtual
.fields

Virtual fields
Automation Toolbox for Jira provides a set of special fields called , making almost all virtual fields pro

 accessible to every feature in the app.perties of issues, projects and users

Virtual fields may be and by Automation Toolbox for Jira in the same way ordinary custom read written
fields are.

Virtual fields and their associated were created to ,field codes

provide data accessibility beyond the scope of normal Jira workflow processing
insure throughout their use.data integrity

In Automation Toolbox for Jira you can use virtual fields by searching for and picking their associated
 in the dropdown menus provided wherever a can be inserted. field codes parser expression

Your browser does not support the HTML5 video element

Field Name Field code Value

Summary %{issue.
summary}

Issue Summary as STRING

All of all available can . comprehensive overview virtual fields be found here

https://apps.decadis.net/display/AUTOMATION/Virtual+fields
https://apps.decadis.net/display/AUTOMATION/Virtual+fields
https://apps.decadis.net/display/AUTOMATION/Field+codes+and+usage
https://apps.decadis.net/display/AUTOMATION/Virtual+fields

Description %{issue.
description}

Issue Description as STRING

Assignee %{issue.
assignee}

User name of the Assignee as STRING

Parent's assignee %{parent.
assignee}

User name of the parent's Assignee as
 STRING

Number of votes
received

%{issue.votes} NUMBER of votes received by the issue.

Parsing modes

General Information

There available in the . The used are multiple parsing modes expression parser two most commonly
parsing modes are:

Basic: with this simple parsing mode you can write free text and insert field codes with format %
} or anywhere in your text. These {...somefield %{...somefield.i} field codes will be replaced

 of the issue currently being processed.at runtime with the corresponding field values
Advanced: with this parsing mode we can do much more complex text composition thanks to
the usage of functions for replacing substrings, changing case, reading fields in linked issues,
sub-tasks, JQL selected issues, and much more. It requires the text to be parsed to be written
as respecting the .string expression parser syntax

You can parsing modes. The available modes !easily switch between depend on the context

Your browser does not support the HTML5 video element

Parsing modes overview

Mode Supported
features

Return type Example

Remember

Numeric field codes are and only available for number fields, date/time fields countable
.virtual fields

The available , and depend on the selected .Selectors Conditions Actions Trigger

The syntax depends on the and the of the rule. Therefore the parsing mode context
following table explains the different parsing modes.

Most functions will accept values so casting values to string is a very string powerful function
. Details can be found below in the section!converting data types
Additionally you can directly transform a field value to text using the following syntax: %{...
somefield}

https://apps.decadis.net/display/AUTOMATION/Field+codes+and+usage
https://apps.decadis.net/display/AUTOMATION/Expression+parser+201+-+All+functions
https://apps.decadis.net/display/AUTOMATION/Automation+selectors
https://apps.decadis.net/display/AUTOMATION/Automation+conditions
https://apps.decadis.net/display/AUTOMATION/Automation+actions
https://apps.decadis.net/display/AUTOMATION/Automation+triggers
https://apps.decadis.net/display/AUTOMATION/Parsing+modes
https://apps.decadis.net/display/AUTOMATION/Field+codes+and+usage
https://apps.decadis.net/display/AUTOMATION/Data+types#Datatypes-cast

Basic Field codes

STRING

The basic parsing mode supports the usage of field codes.
Field codes can be used to access issue field values.

simple text using a field code to read the

summary

This is the issue summary: %{trigger.
issue.summary}

Advanced Field codes

Parser
Functions

STRING The advanced parsing mode has a defined syntax that allows
you to write functions to read and manipulate data from any
issue in Jira. Field codes are supported as well as clear text,
written in quotation marks.

Advanced expression to read the issue

summary and use a function to get the assignee

mail address

"This is the issue summary:" + %
{trigger.issue.summary} + " and the
assignee mail is: " + userEmail(%
{trigger.issue.assignee})

Math
/date
time

Field codes

Parser
Functions

NUMBER

DATE

DATE_TIME

The mathematical and date time parsing mode works like the
advanced mode but expect a number as result instead of a
string. The resulting number is used to updated numeric or
date time fields. In case of date or date time fields the number
will be cast to a date.

Time to resolve the issue

{trigger.issue.resolutionDate} -
{trigger.issue.createdDate}

Logical Field codes

Parser
Functions

BOOLEAN The logical parsing mode works like the advanced parsing
mode but expression result must return true or false.

Check if the assignee is equals the reporter

{trigger.issue.assignee} = {trigger.
issue.reporter}

Issue
List

Field codes

Parser
Functions

ISSUE []

String
List

Field codes

Parser
Functions

STRING []

Mixed Field codes

Parser
Functions
written in
three curly
braces

STRING

Functions and operators
To use the full power of the expression parser you can use and combine them with various functions op

.erators

Functions

Boolean expressions
Numbers, Dates and Times
Strings
Selectable fields
Users, groups and roles
Versions
Historical field values
Miscellaneous
Functions to temporarily store and retrieve values
Working with lists

A can be found .comprehensive overview here

Operators

Different operators can be used in the expression parser. All operators are listed on these pages:

Operators
List operators

Automatic parsing mode converter: You can write your text in , and then switch basic mode
to . The text to be parsed will be automatically rewritten as a string advanced mode
expression. Now, you can simply make the modifications you require, making use of text
formatting functions, or inserting math or time expressions where needed.

To update issue fields the parsing result will be cast to the expected value e.g. a user name
will be cast to a user to update a user field like the assignee field.

https://apps.decadis.net/display/AUTOMATION/Boolean+expressions
https://apps.decadis.net/display/AUTOMATION/Numbers%2C+Dates+and+Times
https://apps.decadis.net/display/AUTOMATION/Strings
https://apps.decadis.net/display/AUTOMATION/Selectable+fields
https://apps.decadis.net/display/AUTOMATION/Users%2C+groups+and+roles
https://apps.decadis.net/display/AUTOMATION/Versions
https://apps.decadis.net/display/AUTOMATION/Historical+field+values
https://apps.decadis.net/display/AUTOMATION/Miscellaneous
https://apps.decadis.net/display/AUTOMATION/Functions+to+temporarily+store+and+retrieve+values
https://apps.decadis.net/display/AUTOMATION/Working+with+lists
https://apps.decadis.net/display/AUTOMATION/Expression+Parser
https://apps.decadis.net/display/AUTOMATION/Operators
https://apps.decadis.net/display/AUTOMATION/List+operators

	Expression parser 101

