
Create issues and sub-tasks

This function has been with the release. renamed JWT 3.0

Find the new documentation at:

Create issue

On this page

Purpose
Example: Make Epic issues create automatically 3 Stories when executing a certain transition
Configuration Parameters
Usage Examples
Related Features

Purpose
Post-function " " allows you to automatically create or new and when executing a Create issues and subtasks one multiple issues sub-tasks
transition in your workflows. You can also based on the values of fields in other issues, and to set the fields of the new issues link the new issues
the other issues in your Jira instance.

Example: Make Epic issues create automatically 3 Stories when executing
a certain transition
In this example we show how to implement a post-function in the workflow of issues in order to automatically create 3 Stories with the following Epic
summaries: ' ', ' ' and ' '.GUI Design Business Logic Data Model

Description of the behavior configured

The 3 new that will be created will have the following characteristics:stories

Project: the project where the stories are going to be created is the same as current issue, i.e., the .Epic

Summary: will take the value of the , i.e., " ", " " and " ". To do it we use string expression seed string GUI Design Business Logic Data Model
, which is simply the value of the seed string.^%

Description: we have a different description per each new story:
Story created by seed " ": "Design and implementation of the GUI for the Epic."GUI Design
Story created by seed " ": "Implementation of the business logic for the Epic issue."Business Logic
Story created by seed " ": "Design and implementation of the data model for the Epic." Data Model
We use the following string expression:
getMatchingValue(^%, ["GUI Design", "Business Logic", "Data Model"], ["Design and implementation
of the GUI for the Epic.", "Implementation of the business logic for the Epic issue.", "Design
and implementation of the data model for the Epic."])

Set Fields: we set the following fields in the new story:
Assignee: we assign each issue to a different user. To do it we write the , or a (not to be name of a project role user name
confused with user's full name). In case we use a project role, we previously should have set the default user for each project

.role in each project
We use the following string expression: getMatchingValue(^%, ["GUI Design", "Business Logic", "Data

, and , where GUI DesignerModel"], ["GUI Designer", "Logic Analyst", "Data Architect"]) " " "Logic Analyst" "
 are project role names.Data Architect"

Reporter: we use as value for setting the reporter. Current user is the user who is triggering the transition where the current user
post-function is being executed.
Components: we set field with different values per each new story.Components
We use the following string expression: getMatchingValue(^%, ["GUI Design", "Business Logic", "Data
Model"], ["GUI", "Business Core, Auxiliary Elements", "Data Base, Data Persistency"])
Epic Link: we set to the value of in current issue, which is an . This way we are linking each new story Epic Link Epic Name Epic
with its epic. If we were executing the post-function from a , we would have to use field as value, this way we would story Epic Link
be making a to create a new .story sibling story

https://www.decadis.net/dev/doku/display/JWTSDC/JWT+expression+parser+-+the+basics
https://apps.decadis.net/display/JWTSDC/Create+issue
https://apps.decadis.net/display/JWT/Assign+to+project+role
https://apps.decadis.net/display/JWT/Assign+to+project+role

Execute Transition: we write the name of transition " ", this way we are moving the new stories to status Start Progress In Progress
just after issue creation. We can write into this field more than once, making the new issue to sequentially execute several
transitions in its workflow.
New comment: we create a comment in each new issue with a dynamic text using basic parsing mode, where field codes are
replaced with their values at runtime.
We use the following text: .This issue was created automatically from epic "%{12511}" on %{00057}.
New watchers: we use the following string expression for obtaining the list of users who are watching issues blocked by the : Epic (t

, and this way all those users become watchers of the new)oString(fieldValue(%{00133}, linkedIssues("blocks")))
stories. Note that is field codes for .%{00133} Watchers

Inherit Remaining Fields: fields not set in section will inherit the values of the same fields in the issue.Set Fields Epic

Issue Links: each new story will be linked using " " issue link type, to all the issues blocked by its . This way we are creating a blocks Epic
direct blocking relation where there was only an indirect one (through the epic).

Conditional execution: we set a condition in order to ensure that the post-function is only executed when current issue is an , this way Epic
we can use the post-function in workflows shared with other issue types.

Once configured, transition will look like this:

Screenshots showing an example of execution of the post-function

Configuration Parameters

Issues to be created

Specifies whether we want to create issue, or . In case of multiple issues we use . We should only one multiple issues one seed for each new issue
use one of 3 different kinds of seeds:

Seed issues: we use existing issues as seeds for the new issues. We have 2 different methods to select out seeds issues:
JQL Query: a new issue will be created per each issue returned by a .JQL Query
Issue List: a new issue will be created per each issue returned by an . Fields in seed issues can be Issue List expressions
referenced using prefix in field codes. Example: .^ Create a Subtask in each Story of an Epic

Seed strings: a new issue will be created per each string returned by a . This is the method used in the previous String List expressions
example. Seed string can be referenced using when setting fields or issue links for the new issue. The usage example described above, ^%
and these others 3 ones use seed strings: , Create a Story for each Component in Epic Create a sub-task for each user selected in a

 and .Multi-User Picker Create specific sub-tasks for each selected component
Seed numbers: we use a (can be a literal number) for specifying the number of issues to be created. Seed number Math-Time expressions
(i.e., number of creation order starting by 1) can be referenced using when setting fields or issue links for the new issue. Example: ^ Create 3

.issues in 3 different projects

Issue Type

This parameter specifies the issue type of the new issues or subtasks. When selecting you will have to set field in order to set the Story Epic Link
relationship with , like shown in the previous usage example.Epic

Project

This parameter is unavailable for sub-tasks, since they have to belong to the same project as their parent issue. There are 4 methods of specifying the
project:

Current Project: the project of the current issue, i.e., the issue that is executing the post-function.
Selected Project: we use a dropdown list for selecting a project among those present in the JIRA instance.
Seed Issue's Project: the project of the seed issue which is causing the issue creation. This option is only available when creating multiple
issues based on seed issues.
Project Key: a that returns a . This method is typically used for specifying different a project for each new string expression project key
issue. In the previous example we could have used something like:

, where ,getMatchingValue(^%, ["GUI Design", "Business Logic", "Data Model"], ["CRM", "HKV", "PKT"]) CRM
 and are project keys.HKV PKT

Parent Issue

This parameter is available only for creation of sub-tasks, i.e., when the issue type selected in parameter is a sub-task. There are 6 Issue Type
methods for selecting the parent issue:

Current Issue: the issue that is executing the post-function. It only makes sense when current issue is not a sub-task itself.
Parent of Current Issue: the parent of the issue that is executing the post-function, which obviously should be a sub-task. With this option
we are creating a .sibling sub-task
Seed Issue: seed issue which is causing the issue creation. It makes sense when seed issue is not a sub-task itself.
JQL Query: we use a JQL query for returning an issue that will be the parent of the sub-task that will be created. If the JQL query returns
more than one issue, the first one which isn't a sub-task will be used.
Issue List: we use an for selecting the parent issue. If more than one issue is returned, then the first non-sub-task Issue List expressions
will be used.
Issue Key: a will be used for returning the issue key of the parent. We could use something like for using a string expression " "CRM-23
fixed issue. In the previous example, we could have used the following string expression for selecting different parents for each new issue: ge

.tMatchingValue(^%, ["GUI Design", "Business Logic", "Data Model"], ["CRM-23", "CRM-24", "CRM-25"])

Summary

We set the summary of the new issues. We can use two different parsing modes:

Basic: field codes with format can be inserted among the text. The field codes will be replaced with their corresponding field %{nnnnn}
values at run time.

https://apps.decadis.net/pages/viewpage.action?pageId=1803383
https://apps.decadis.net/display/JWT/Examples+of+Issue+List+expressions
https://apps.decadis.net/pages/viewpage.action?pageId=1804216
https://apps.decadis.net/display/JWT/Examples+of+String+List+expressions
https://apps.decadis.net/pages/viewpage.action?pageId=1804216
https://apps.decadis.net/display/JWT/Create+a+sub-task+for+each+user+selected+in+a+Multi-User+Picker
https://apps.decadis.net/display/JWT/Create+a+sub-task+for+each+user+selected+in+a+Multi-User+Picker
https://apps.decadis.net/display/JWT/Create+specific+sub-tasks+for+each+selected+component
https://apps.decadis.net/display/JWT/Examples+of+Math-Time+expressions
https://apps.decadis.net/display/JWT/Create+3+issues+in+3+different+projects
https://apps.decadis.net/display/JWT/Create+3+issues+in+3+different+projects
https://apps.decadis.net/display/JWT/Examples+of+Issue+List+expressions

Advanced: we use a for setting the summary. In this mode we can insert references to seeds (seed string , or seed string expression ^%
number), or field values on seed issues (format and). We use the implemented by the plugin.^ ^%{nnnnn} ^{nnnnn} Expression Parser

Description

We set the description of the new issues. We can use two different parsing modes:

Basic: field codes with format can be inserted among the text. The field codes will be replaced with their corresponding field %{nnnnn}
values at runtime.
Advanced: we use a for setting the summary. In this mode we can insert references to seeds (seed string , or seed string expression ^%
number), or field values on seed issues (format and). We use the implemented by the plugin.^ ^%{nnnnn} ^{nnnnn} Expression Parser

Set Fields

This section is used for setting fields in the new issues, including , , , etc.Assignee Reporter Epic Link

Depending on the the field type we can use different methods for specifying the value of the fields.

Post-function allows many different ways for assigning the newly created issues. These are some examples:Create Issues and Sub-tasks

Assignment Value
Type

Value/Source Explanation

Current user Field in
current
issue

Current user The new issue is assigned to the user who is executing the transition containing the post-function.

Parent issue's
assignee

Field in
current
issue

Parent's assignee If current issue is a sub-task, we are assigning the new issues to the user who currently is assigned parent
issue.

Epic's reporter Field in
epic
issue

Reporter If current issue is linked to an epic, the new issues are assigned to the reporter of that epic.

Specific user Parsed
text
(basic
mode)

A , not user name
to be confused with
user's full name.

In the example we assign the newly created issues to user.admin

Load
balancing:
least busy user
in a project role

Parsed
text
(advance
d mode)

A string expression
that uses function le
astBusyUserInRol

.e()

In the example we assign the issue to the user in project role Developers for current project who has the least
number of non-resolved issues in project belonging to category called . We use the following 'New projects'
expression: leastBusyUserInRole("Developers", %{00018}, "category = 'New projects'")

Inherit values for remaining fields

Optionally we can inherit field values for the fields whose values have not been set in section . There are 5 different options for selecting the Set Fields
issue the values will be inherited from:

Current Issue: the issue that is executing the post-function.
Seed Issue: seed issue which is causing the issue creation. This method is only available when creating multiple issues based on seed
issues.
Parent of Current Issue: the parent of the issue that is executing the post-function. This method only makes sense when current issue is a
sub-task.
Parent of New Sub-task: the parent of the new sub-task. This method is only available when the issue type of the new issue is a sub-task.
Epic of Current Issue: the epic of current issue. If current issue is a sub-task and hasn't set, then the epic of its parent will be Epic Link
used.

Issue Links

This section is used for specifying issue links to be created between new issues and other issues in the Jira instance. We can set as many issue links
as we need, specifying an and a set of . There are 7 different methods to define the issues to be linked:issue link type issues to be linked

Current Issue: the issue that is executing the post-function.
Seed Issue: seed issue which is causing the issue creation. This method is only available when creating multiple issues based on seed
issues.
Parent of Current Issue: the parent of the issue that is executing the post-function. This method only makes sense when current issue is a
sub-task.
Parent of New Sub-task: the parent of the new sub-task. This method is only available when the issue type of the new issue is a sub-task.
JQL Query: we use a JQL query for selecting a set of issues that will be the linked to each new issue, using the issue link type previously
selected.
Issue List: we use an for selecting a set of issues that will be the linked to each new issue, using the issue link type Issue List expressions
previously selected.

https://apps.decadis.net/display/JWT/Expression+Parser
https://apps.decadis.net/display/JWT/Expression+Parser
https://apps.decadis.net/display/JWT/Examples+of+Issue+List+expressions

Additional actions

Optional actions to be carried out once all the new issues have been created. Currently there is only one available action:

Save issue keys of created issues into virtual field as a comma separated list:Ephemeral String 3
Adds a comma separated list of issue keys at the end of the current value of , this way we can accumulate in this field all Ephemeral String 3
the issues created in subsequent executions of post-function Create issues and sub-tasks within a same post-function. Then we can use this
value in another post-function, e.g. sending an email, or creating a comment.

Conditional execution

The post-function will be executed only when the boolean expression entered in this parameter is true, otherwise nothing will happen. You can make
your boolean expression depend on the values of one or more fields, issue links, sub-tasks, etc. Use the syntax defined by the .Expression Parser

Usage Examples
 Page: Assign new issues to a different project role depending on field

value in current issue
 Page: Clone an issue and all its subtasks (with additional restrictions)
 Page: Create 3 issues in 3 different projects
 Page: Create a dynamic set of sub-tasks based on checkbox selection

with unique summaries
 Page: Create a static set of sub-tasks with unique summaries
 Page: Create a story for each component in an epic
 Page: Create a sub-task for each user selected in a Multi-User Picker
 Page: Create a sub-task in each story of an epic
 Page: Create specific sub-tasks for each selected component

Related Features

https://apps.decadis.net/display/JWT/Expression+Parser
https://apps.decadis.net/display/JWT/Assign+new+issues+to+a+different+project+role+depending+on+field+value+in+current+issue
https://apps.decadis.net/display/JWT/Assign+new+issues+to+a+different+project+role+depending+on+field+value+in+current+issue
https://apps.decadis.net/pages/viewpage.action?pageId=13074497
https://apps.decadis.net/display/JWT/Create+3+issues+in+3+different+projects
https://apps.decadis.net/display/JWT/Create+a+dynamic+set+of+sub-tasks+based+on+checkbox+selection+with+unique+summaries
https://apps.decadis.net/display/JWT/Create+a+dynamic+set+of+sub-tasks+based+on+checkbox+selection+with+unique+summaries
https://apps.decadis.net/display/JWT/Create+a+static+set+of+sub-tasks+with+unique+summaries
https://apps.decadis.net/display/JWT/Create+a+story+for+each+component+in+an+epic
https://apps.decadis.net/display/JWT/Create+a+sub-task+for+each+user+selected+in+a+Multi-User+Picker
https://apps.decadis.net/display/JWT/Create+a+sub-task+in+each+story+of+an+epic
https://apps.decadis.net/display/JWT/Create+specific+sub-tasks+for+each+selected+component

	Create issues and sub-tasks

