Format field value

This function has been renamed with the JWT 3.0 release.
Find the new documentation at:

Format field value

On this page

Purpose

Example: Formatting issue summary and replacing contained terms
Configuration Parameters

Usage Examples

Related Features

Purpose

This post-functions allows to give format to current value of a field using a set of formatting operations

Example: Formatting issue summary and replacing contained terms

Now, let's see a configuration example for formatting issue Summary for removing undesired white spaces, capitalizing words and replacing the word "
Client" by "Customer":

https://www.decadis.net/dev/doku/display/JWTSDC/JWT+expression+parser+-+the+basics
https://apps.decadis.net/display/JWTSDC/Format+field+value

Field to be formated:

Blanks trimming operations:

Case changing operations:

Find & Replace operations:

Conditional execution:

Optional boolean expression that should be
satisfied in order to actually execute the post-
function.

(Syntax Specification)

Summary - [Text] ~

Remove all leading white spaces
#/ Remove all trailing white spaces
Leave only one white space between words

Remove all white spaces in the text

Do nathing
Convert all the characters to lower case
Convert all the characters to upper case

* (Capitalize all the whitespace separated words

Substring to be found:
literal text ® text literal (ignoring case) regular expression regular expression (ignoring case)
Client
Field code injector:
Summary - [Text] - %{00000)

Dynamic patterns can be created through insertion of field codes that will be replaced with the corresponding field values.

Replacement:
replace first * replace all
Customer
Field code injector:
Summary - [Text] - %{00000}

Dynamic patterns can be created through insertion of field codes that will be replaced with the corresponding field values.

Leave the field empty for executing the post-function unconditionaily. Collection of Examples

Logical connectives: and, or and not. Alternatively you can also use &, | and 1.

Comparison operalors: =, 1=, >, >=, <and <=. Operalors in, not in, any in, none in,~and !~ can be used with strings. mulfi-
valued fields and lists.

Logical literals: true and false. Literal null is used with = and ! = to check whether a field is initialized, e.g. {00012} != null

checks whether Due Dale is initialized.

String Field Code Injector: Numeric/Date Field Code Injector:
Summary - [Text] - %{00000} =~ Original estimate (minutes) - [Number] - {00068} =

[Line1/Col1]

Check Syntax

Once configured, post-function looks like this:

The following will be processed after the transition occurs

Triggers ' 0 Conditions 1 Validators 1 Post Functions ' 9

1. Field Summary will be formated using the following operations:

Leading blanks will be removed.

Trailing blanks will be removed.

Repeated blanks between words will be removed.

All the whitespace separated words will be capitalized.
Find all the occurrences of literal text "Client" ignoring the case, and replace with "Customer".

Add post function

Configuration Parameters

Blanks trimming operations

Remove all leading white spaces

Remove all trailing white spaces

Leave only one white space between words
Remove all white spaces in the text

Case changing operations

® Convert all the characters to lower case
® Convert all the characters to upper case
® Capitalize all the whitespace separated words

Find & Replace (literal strings or regular expressions)

® Replace first found substring found
® Replace all found substrings

Supported Field Types
The following field and custom field types can be formatted:

Text fields: Summary, Description, Environment, etc. Also Single-line and Multi-line text custom fields.
Versions fields: Fix Version/s, Affects Version/s and Version Pickers custom fields (single and multi select).
Labels fields: issue's Labels field and Labels custom fields.

Selectable fields: Select List, Multi-Select List, Radio Button

Cascading Select List

Usage Examples Related Features

® Copy parsed text to a field: with this post-function much more
complex text formating operation can be implemented. To do it
use advanced parsing mode.

® Parse field for extracting data

® Regular expression renderer

https://apps.decadis.net/display/JWT/Copy+parsed+text+to+a+field
https://apps.decadis.net/display/JWT/Parse+field+for+extracting+data
https://apps.decadis.net/display/JWT/Regular+expression+renderer

	Format field value

