Examples of Issue List expressions

On this page

Examples of Issue List expressions
Linked Issues

Sub-tasks

Filtering Issues Lists

Obtaining Issue Lists using JQL Queries

Examples of Issue List expressions

This page presents a collection of issue selection expressions valid for the Expression Parser. All this expressions return an Issue List type.

Linked Issues

Epic Link is also a kind of issue link. It's represented by the following 2 issue link types has Epi c andi s Epi ¢ of, which are used like this:

® Epicissueis Epic of Storyissue
® Story issue has Epi c Epic issue

Expression Issues returned

I'i nkedl ssues() Issues linked to current issue
through any issue link type,
including Epic Link.

I'i nkedl ssues("i s Issues linked to current one

bl ocked by") through is blocked by issue
link type, i.e., current issue i
s bl ocked by linked issue.

I'i nkedl ssues("i s Issues linked to current issue
bl ocked by, is through is blocked by, is

duplicated by, clones") duplicated by and blocks
issue link types.

i nkedl ssues("has An issue list containing only
Epi c") the Epic of current issue.

Since version 2.3.0 we
recommend to use the
following simplified syntax:

epic()
i nkedl ssues("is Epic In case current issue is an Epic
of ") it will return all the issues

current issue is epic of.

Since version 2.3.0 we
recommend to use the
following simplified syntax:

i ssuesUnder Epi c()

Notes

The returned list will contain 0 or 1 element, depending on whether current
issue has an epic issue.

Function epi ¢() has a somehow different behavior than | i nkedl ssues
("has Epic"), since in case current issue is an Epic, an issue list containing
current issue will be returned.

If current issue is a sub-task of an Epic issue, or a sub-task of an issue directly
under an Epic, an issue list containing the Epic will be returned.

Function i ssuesUnder Epi c() has a somehow different behavior than | i nke
dl ssues("has Epic"), since in case current issue is not an Epic but is
under an Epic issue, all the issues under current issue's Epic will be returned,
including current issue itself.

In case current issue is a sub-task of an issue under an Epic, all the issues
directly under Epic of current issue's parent will be returned, including current
issue's parent, but not their sub-tasks. In case we also want to include the sub-
tasks of issues under epic we should use the following syntax:

i ssuesUnder Epi c() UNI ON subt asks(i ssuesUnder Epi c())

https://apps.decadis.net/display/JWT/Expression+Parser
https://apps.decadis.net/display/JWT/JWT+Release+Notes+2.3.0
https://apps.decadis.net/display/JWT/JWT+Release+Notes+2.3.0

I'i nkedl ssues("is Epic
of ", linkedl ssues("has

Epic")))

Since version 2.3.0 we
recommend to use the
following simplified syntax:

i ssuesUnder Epi c()

I'i nkedl ssues("is Epic
of ", linkedl ssues("has
Epic")) EXCEPT

i ssueKeysTol ssueli st (%
{00015})

Since version 2.3.0 we
recommend to use the
following simplified syntax:

i ssuesUnder Epi c()
EXCEPT

i ssueKeysTol ssuelLi st (%
{00015})

I'i nkedl ssues() EXCEPT
I'i nkedl ssues("is Epic
of, has Epic")

transitionLi nkedl ssues

")

transitionLi nkedl ssues
("bl ocks")

transitivel yLi nkedl ssue
s("is blocked by")

l'i nkedl ssues("", %
{00041})

I'i nkedl ssues("bl ocks",
9% 00041})

Sub-tasks

Issues with the same epic as
current issue.

Issues with the same epic as
current issue, excluding
current issue.

All the issues linked to current
issue, except those linked
through has Epic or is Epic of
issue link types.

Issues that have been linked
to current issue in transition
screen.

Issues that have been linked
to current issue in transition
screen through blocks issue
link type.

Issues which are directly or
indirectly blocking current
issue.

Issues linked to parent of

current issue.

Issues blocked by parent of
current issue.

Current issue is also included in the returned issue list.

Current issue is not included in the issue list returned.

{00015} =Issue key

Indirect blocking occurs when an issue is blocking an issue that is directly
blocking current issue.

Example: ISSUE-0 bl ocks ISSUE-1 bl ocks ISSUE-2 bl ocks ISSUE-3, in
this case ISSUE-2 is directly blocking ISSUE-3, and ISSUE-0 and ISSUE-1 are
indirectly blocking ISSUE-3.

This expression only makes sense when current issue is a sub-task.

% 00041} = Parent's issue key

This expression only makes sense when current issue is a sub-task.

9% 00041} = Parent's issue key

All sub-tasks have one and only one parent issue, and may have sibling sub-tasks, i.e., those issues sharing the same parent issue. Relation between
Epic and Stories is not implemented through parent-child relation, but using issue links "is Epic of" and "has Epic", as explained above.

Expression
subt asks()

subt asks(% 00041})

subt asks(i nkedl ssues("is bl ocked

by"))

Issues returned

Notes

Sub-tasks of current issue. -

Sub-tasks of current sub-task's parent, including current sub-task.

% 00041} = Parent's
issue key

Sub-tasks of all the issues linked to current issue using is blocked -

by issue link type.

https://apps.decadis.net/display/JWT/JWT+Release+Notes+2.3.0
https://apps.decadis.net/display/JWT/JWT+Release+Notes+2.3.0

si bl i ngSubt asks()
subt asks(epic())

subt asks(i ssuesUnder Epi c())

subt asks(i ssuesUnder Epi c()) EXCEPT

subt asks()

Filtering Issues Lists

Sub-tasks of current sub-task's parent, excluding current sub-task. -

Sub-tasks of current issue's Epic. -

Sub-tasks of issues under current issue's Epic. -

issue's sub-tasks.

Sub-tasks of issues under current issue's Epic excluding current -

Once we have an issue list, we can filter it by issue type, status, status category, resolution, project, field values, cardinality (i,e., number of
appearances in the list), or using a boolean predicate, which is the most powerful method of issue filtering.

Expression

filterByl ssueType
(1inkedl ssues(),
"l mprovenent, New Feature")

filterByStatus
(filterByl ssueType
(linkedl ssues(),

"I nprovenent, New
Feature"), "Open, In
Progress")

filterByResol ution
(subt asks(), "Cannot
Reproduce, |nconplete")

filterByResol ution
(subtasks(), "")

filterByProject

(linkedl ssues(), "CRM HR'")
filterByPredicate

(linkedl ssues(), "% 00016}
not in ["Cl osed",

"Resol ved"])
filterByPredicate

(l'inkedl ssues(), "% 00016}

= 9400016} AND toUpper Case
("9 00000}) ~ toUpperCase
("inportant"))

Since version 2.2.42 case ignoring
operator ~~ can be used:
filterByPredicate

(linkedl ssues(), "% 00016}

= % 00016} AND "% 00000} ~-

"important")

Issues returned

Issue types "Improvement"
and "New Feature" linked to
current issue.

Issue types "Improvement"
and "New Feature" linked to
current issue, which are in
statuses "Open" or "In
Progress".

Sub-tasks with resolutions "Ca
nnot Reproduce" or "Incompl
ete".

Unresolved subtasks.

Issue that belong to projects
with keys "CRM" or "HR".

9% 00016} = Issue status
Linked issues in statuses
different from "Closed" and "R
esolved".

Linked issues with the same
status as current issue, which
also contain the word
"important” in their summary.

Notes

In this example we are applying 2 filters, one after another, using
function composition.

N9 00016} not in ["Cl osed", "Resolved"] isaboolean
expression which should be satisfied in order to pass the filter. We add
suffix A to field codes in order to reference the values of issues being
filtered (i.e., linked issues), instead of current issues values.

%4 00016} = Issue status
We use function t oUpper Case() in order to ignore the case when
looking for the word "important" in issue summaries.

Obtaining Issue Lists using JQL Queries

Issue lists with big numbers of issues are temporarily stored in server's memory. For this reason it's recommended not to build up big lists in your
expressions, like retrieving all the issues in a project using function get | ssuesFr onPr oj ect s(" PKEY") . Instead, it's better to use function i ssues
FromJQL("JQL_Query") using aJQ_Query that returns a small number of issues to work with.

Parameter JQL_Query is a string that represents a valid JQL Query. We typically build dynamic JQL queries inserting field values that we
concatenate to string literals using + operator.

Expression

Issues returned

Notes

https://apps.decadis.net/display/JWT/JWT+Release+Notes+2.2.42

i ssuesFromJQ.("project =" + %
{00018} + " AND issuetype in (Bug,
Incident)")

i ssuesFromJQ.("project =" + %
{00018} + " AND issuetype ="'" + %
{00014} + "'")

Issues with types "Bug" and "Incid
ent" in the same project of current
issue.

%4 00018} = Project key

%4 00014} =Issue type

Issues with same issue type and
project as current issue.

%4 00018} = Project key

Note that we have written issue type in simple quotation
marks. The reason is that issue type name may contain
spaces.

	Examples of Issue List expressions

