
Schedules Definition Grammar

On this page

Schedules Definition Grammar (SDG)
SDG Syntax
Examples
Functions for Time Calculations on Schedules
Backus–Naur Syntax Specification
Schedules Usage Examples

Schedules Definition Grammar (SDG)
Schedules Definition Grammar is a language designed for specifying , i.e., custom subsets of the time continuum where a certain activity schedules
is or can be done.

Schedules are defined in Jira at .Administration > Add-ons > JIRA WORKFLOW TOOLBOX > Schedules

There is a set of parser functions available to be used in any feature of the plugin (conditions, validations, post-functions and calculated fields) to do
time calculations on your custom schedules defined using SDG. The basic operations that can be done are:

Belonging: asks for whether a certain instant of the time belongs or not to a particular schedule.
Time subtraction: calculates the difference between 2 particular natural time instants within the time subset defined by a particular schedule.
Time addition: calculates the instant of time resulting of adding a certain time duration to a base instant within the time subset defined by a
particular schedule.

SDG Syntax

Main Concepts

Schedule: formal definition of a part of the natural time (i.e., time continuum) on which we will be able to do time calculations. Schedules are
composed of at least one .time specifier

Time Specifier: are composed of a and a , and are written like this: <time_definition> <block_content> .time definition block { }
Time definition: is a definition of a part of the time continuum.
Block: is written between curly brackets (i.e.,), and defines a scope where lower level can be written.{} time specifiers

Time Specifier's Level: time specifiers are arranged in a 5 level hierarchy: level, level, level, level and level. global year month week day
The top level is the one. A time specifier of a particular level is always explicitly or implicitly contained in a time specifier of the global
immediately higher level. When the higher level time specifier is not written, then it's implicitly contained in an unrestricted higher level time
specifier.

Time Specifier's Priority: time specifiers have also a associated, so that when 2 time specifiers overlap in a same level, the one priority
with the higher priority is applied. Time specifiers with same priority in a same level are not allowed to overlap, i.e., the intersection of their tim

 must be empty.e definitions

Time Specifier's Category: we can classify time specifiers in 2 categories.
Absolute: define unique and specific parts of the time continuum. This category of time specifiers represents the ones in the global
level.
Relative: define parts of the time in the context of other time specifiers, i.e., the actual part of the time continuum defined depends
on the time specifier where they are contained. This category of time specifiers contains the ones in the rest of levels: level, year mo

 level, level and level.nth week day

Comment: SDG supports single-line comments. Comments begin with . Example: # #Summer Schedule

Time Specifiers

The following table shows all the time specifiers available, ordered by level an priority, and some examples of each of them.

Level /
Priority

Highest Priority ... Lowest Priority

GLOBAL LEVEL Date List

2018/03/25, 2018/AUG/18
2017/01/01, 2017/05/01, 2017/12/25-2017
/12/31

Can contain intervals.

Date Interval List

2018/JUN/15-2018/SEP/15
2018/01/01-2018/01/07, 2018/04/10-2018
/04/20

Year List

2000, 2005, 2010
2000-2011
2010-2015, 2018, 2020-
2025

Can contain intervals.

YEAR LEVEL Month-Day List

JAN/1, MAY/1, JUL/4, DEC/25

Month-Day Interval List

MAR/20-MAR/25
AUG/1-AUG/15, NOV/5-NOV-15

Month List

JAN, MAR, MAY, DEC
JAN-JUN, SEP-DEC
JAN-MAR, MAY, JUL, OCT-
DEC

Can contain intervals.

MONTH LEVEL Day of Month List

1, 15, 30
1-5, 15, 25-3
1, 15-31
25-5

Can contain intervals.

... ...

WEEK LEVEL Day of Week List

MON-THU
MON-WED, FRI
MON, WED, FRI
SAT-MON, WED

Can contain intervals.

... ...

DAY LEVEL Whole Day

00:00-00:00;

Time Interval List

8:00-15:00;
8:00-15:00, 16:00-19:00;
21:00-3:00;

Empty

;

Used for defining holidays.

Examples

Schedule Description

08:00-15:00, 16:00-20:00; Any date-time with time part between 08:00 and 15:00, or 16:00 and 20:00.

By convention 15:00 and 20:00 time instants are out of the schedule.

MON-FRI{08:00-15:00, 16:00-
20:00;}

Mondays to Fridays from 08:00 to 15:00, and from 16:00 to 20:00.

MON-THU{08:00-15:00, 16:00-
20:00;} FRI{08:00-15:00;}

Mondays to Thursdays from 08:00 to 15:00, and from 16:00 to 20:00. Fridays from 08:00 to 15:00.

Winter Schedule
MON - THU {
 08:00 - 15:00,
 16:00 - 20:00;
}

FRI {
 08:00 - 15:00;
}

Summer Schedule
JUN/15 - SEP/15 {
 MON - FRI {
 08:00 - 14:30;
 }
}

From 15 June to 15 September, Mondays to Fridays from 8:00 to 14:30.

For the rest of the year, Mondays to Thursdays from 08:00 to 15:00, and from 16:00 to 20:00. Fridays
from 08:00 to 15:00.

Winter Schedule
MON - THU {
 08:00 - 15:00,
 16:00 - 20:00;
}

FRI {
 08:00 - 15:00;
}

Summer Schedule
JUN/15 - SEP/15 {
 MON - FRI {
 08:00 - 14:30;
 }
}

Annual Holidays
JAN/1, MAY/1, NOV/1, DEC
/25 {;}

2017 Holidays
2017/JAN/12, 2017/APR/13,
2017/APR/14, 2017/NOV/23
{;}

From 15 June to 15 September, Mondays to Fridays from 8:00 to 14:30.

For the rest of the year, Mondays to Thursdays from 08:00 to 15:00, and from 16:00 to 20:00. Fridays
from 08:00 to 15:00.

We added also a specification for , i.e., holidays the happen the same day every year, annual holidays
and for (2017 in the example).particular year holidays

Schedule from 1st
December 2017 on

Winter Schedule
MON-THU {
 08:30 - 15:30,
 16:00 - 19:30;
}

FRI {
 08:00 - 15:00;
}

Summer Schedule
JUN/15 - SEP/15 {
 MON - FRI {
 08:00 - 14:30;
 }
}

Annual Holidays
JAN/1, MAY/1, JUL/4, NOV
/1, DEC/25 {;}

2018 Holidays
2018/03/27 - 2018/03/30,
2018/10/22 {;}

Schedule up to 30th
November 2017
2000/01/01 - 2017/11/30 {

 # Winter Schedule
 MON-THU {
 08:00 - 15:00,
 16:00 - 20:00;
 }

 FRI {
 08:00 - 15:00;
 }

 # Summer Schedule
 JUN/15 - SEP/15 {
 MON - FRI {
 08:00 - 14:30;
 }
 }

 # Annual Holidays
 JAN/1, MAY/1, NOV/1, DEC
/25 {;}
}

2017 Holidays
2017/JAN/12, 2017/APR/13,
2017/APR/14, 2017/NOV/23
{;}

In this example we show how to introduce some modifications in the previous schedule that will be
applied since 1st December 2017 on, keeping the old schedule valid only up to 30th November 2017.

Functions for Time Calculations on Schedules
The following functions are available in most features of the add-on (conditions, validations and post-functions) for doing time calculations on your
custom schedules:

Function Returned value

inSchedule(number , string time_instant sched
, timeZone) : booleanule_name time_zone

Returns if the time instant belongs to the schedule with name true time_instant schedule_na
 for timezone.me time_zone

Example: returnsinSchedule(2017/12/01 7:30, "my_schedule", LOCAL) .false
Example: returns inSchedule(2017/12/01 8:00, "my_schedule", LOCAL) .true
Example: returns inSchedule(2017/12/01 17:00, "my_schedule", LOCAL) .false
Example: returns inSchedule(2017/12/04 17:00, "my_schedule", LOCAL) .true

inSchedule(number , string time_instant sched
, string , timeZone ule_name additional_terms ti

) : booleanme_zone

Similar to previous function, but with extra parameter , which is a string additional_terms
containing extra clauses that will be attached to schedule with Schedules Definition Grammar
name schedule_name. This function can be used to include personal holidays to an existing
schedule.
Example without additional terms: inSchedule(2017/12/04 9:00, "my_schedule",

returns . LOCAL) true
Example with additional terms: inSchedule(2017/12/04 9:00, "my_schedule", "2017

 returns ./12/04 {;}", LOCAL) false

timeDifference(number , higher_instant
number , string , lower_instant schedule_name
timeZone) : numbertime_zone

Returns the number of milliseconds elapsed from to within lower_instant higher_instant
schedule with name for timezone.schedule_name time_zone
Example: timeDifference(2017/12/04 10:01, 2017/12/01 01:00,

. returns "my_schedule", LOCAL) 8 * {HOUR} + 31 * {MINUTE}
Example: timeDifference(2017/12/04 17:00, 2017/12/04 14:00,

. returns "my_schedule", LOCAL) 2 * {HOUR} + 30 * {MINUTE}

timeDifference(number , higher_instant
number , string , lower_instant schedule_name
string , timeZone) additional_terms time_zone
: number

Similar to previous function, but with extra parameter , which is a string additional_terms
containing extra clauses that will be attached to schedule with Schedules Definition Grammar
name schedule_name. This function can be used to include personal holidays to an existing
schedule.
Example without additional terms: timeDifference(2017/12/05 18:00, 2017/12/01 9:

 returns .00, "my_schedule", LOCAL) 25 * {HOUR}
Example with additional terms: timeDifference(2017/12/05 18:00, 2017/12/01 9:

 returns .00, "my_schedule", "2017/12/04 {;}", LOCAL) 15 * {HOUR}

addTime(number , number ,base_instant offset
string , timeZone) : schedule_name time_zone
number

Returns the time instant resulting of adding milliseconds to within schedule offset base_instant
with name for timezone.schedule_name time_zone
Example: addTime(2017/12/01 01:00, 8 * {HOUR} + 31 * {MINUTE},

 returns ."my_schedule", LOCAL) 2017/12/04 10:01
Example: addTime(2017/12/04 14:00, 2 * {HOUR} + 30 * {MINUTE},

 returns ."my_schedule", LOCAL) 2017/12/04 17:00

Since version negative values are supported:2.2.41 offset
Example: addTime(2017/04/24 09:00, - 2 * {HOUR}, "my_schedule", LOCAL)
returns .2017/04/21 14:00
Example: addTime(2017/04/20 20:30, - 5 * {HOUR}, "my_schedule", LOCAL)
returns .2017/04/20 13:00

addTime(number , number ,base_instant offset
string , string schedule_name additional_terms
, timeZone) : numbertime_zone

Similar to previous function, but with extra parameter , which is a string additional_terms
containing extra clauses that will be attached to schedule with Schedules Definition Grammar
name schedule_name. This function can be used to include personal holidays to an existing
schedule.
Example without additional terms: addTime(2017/12/01 9:00, 25 * {HOUR},

 returns ."my_schedule", LOCAL) 2017/12/05 18:00
Example with additional terms: addTime(2017/12/01 9:00, 25 * {HOUR},

 returns ."my_schedule", "2017/12/04 {;}", LOCAL) 2017/12/06 18:00

nextTime(number , string time_instant schedul
, timeZone) : numbere_name time_zone

Available since version 2.2.40

If doesn't belong to schedule with name , then returns closer time time_instant schedule_name
in the future that belongs to the schedule, otherwise returns .time_instant
Example: returns nextTime(2017/12/01 01:00, "my_schedule", LOCAL) 2017/12

./01 08:00
Example: returns nextTime(2017/12/01 15:00, "my_schedule", LOCAL) 2017/12

./04 08:00
Example: returns nextTime(2017/12/01 08:00, "my_schedule", LOCAL) 2017/12

./01 08:00
Example: returns nextTime(2017/11/30 15:00, "my_schedule", LOCAL) 2017/11

./30 16:00

nextTime(number , string time_instant schedul
, string , timeZone e_name additional_terms tim

) : numbere_zone
Available since version 2.2.40

Similar to previous function, but with extra parameter , which is a string additional_terms
containing extra clauses that will be attached to schedule with Schedules Definition Grammar
name schedule_name. This function can be used to include personal holidays to an existing
schedule.
Example without additional terms: nextTime(2017/12/01 15:00, "my_schedule",

 returns .LOCAL) 2017/12/04 08:00
Example with additional terms: nextTime(2017/12/01 15:00, "my_schedule", "2017

returns . /12/04 {;}", LOCAL) 2017/12/05 8:00

https://apps.decadis.net/pages/viewpage.action?pageId=1804608
https://apps.decadis.net/pages/viewpage.action?pageId=1804608
https://apps.decadis.net/display/JWT/JWT+Release+Notes+2.2.41
https://apps.decadis.net/pages/viewpage.action?pageId=1804608
https://apps.decadis.net/pages/viewpage.action?pageId=1804608

In the examples above we have used schedule , whose definition in is:"my_schedule" Schedules Definition Grammar

MON - THU {
 08:00 - 15:00,
 16:00 - 19:30;
}

FRI {
 08:00 - 15:00;
}

Note that and are Fridays.2017/04/21 2017/12/01

Custom schedules are defined at . Administration > Add-ons > JIRA WORKFLOW TOOLBOX > Schedules

Backus–Naur Syntax Specification
< > ::= <global_level_specifier> +schedule

< > ::= <date_interval_list> <year_level_specifier>* | <date_list> <year_level_specifier>* | <year_list> global_level_specifier { } { } {
<year_level_specifier>* | <year_level_specifier>+}

< > ::= <month_day_list> <month_level_specifier>* | <month_day_interval_list> <month_level_specifier>* | <month_list> year_level_specifier { } { } {
<month_level_specifier>* | <month_level_specifier>+}

< > ::= <day_of_month_list> <week_level_specifier>* | <week_level_specifier>+month_level_specifier { }

< > ::= <day_of_week_list> <day_level_specifier>* | <day_level_specifier>+week_level_specifier { }

< > ::= <time_interval_list>day_level_specifier

< > ::= <time_interval> (<time_interval>)* | time_interval_list , ; ;

< > ::= <time_literal> <time_literal>time_interval -

< > examples: , , , and .time_literal 00:00 6:30 09:55 13:01 23:59

< > ::= <date_interval> (<date_interval>)*date_interval_list ,

< > ::= (<date_literal> | <date_interval>) ((<date_literal> | <date_interval>))*date_list ,

< > ::= <date_literal> <date_literal>date_interval -

< > examples: , , and .date_literal 2017/06/27 2017/JUN/27 2018/01/01 2020/MAR/2

< > ::= (<year> | <year_interval>) ((<year> | <year_interval>))*year_list ,

< > ::= <year> <year>year_interval -

< > examples: , and .year 1991 2000 2017

< > ::= <month_day> (<month_day>)*month_day_list ,

< > ::= <month_day_interval> (<month_day_interval>)*month_day_interval_list ,

< > ::= <month_day> <month_day>month_day_interval -

< > ::= <month> <day_of_month>month_day /
examples: ., , and JAN/1 MAR/02 AUG/18 DEC/25

< > ::= (<month> | <month_interval>) ((<month> | <month_interval>))*month_list ,

< > ::= | | | | | | | | | | | month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

< > ::= (<day_of_month> | <day_of_month_interval>) ((<day_of_month> | <day_of_month_interval>))*day_of_month_list ,

< > ::= <day_of_month> <day_of_month>day_of_month_interval -

< > ::= (<day_of_week> | <day_of_week_interval>) ((<day_of_week> | <day_of_week_interval>))*day_of_week_list ,

https://apps.decadis.net/pages/viewpage.action?pageId=1804608

< > ::= | | | | | | day_of_week MON TUE WED THU FRI SAT SUN

Schedules Usage Examples
Automatic work log with start and stop work transitions

https://apps.decadis.net/display/JWT/Automatic+work+log+with+start+and+stop+work+transitions

	Schedules Definition Grammar

