Expression Parser

On this page

Parser's Syntax Specification
Data types

Boolean terms

Conditional operator ? :
Numbers and Date-Time terms
Text-String terms

List Management Operators
Issue List terms

Number List terms

String List terms

Temporary Value Storage
Other Functions

Parser's Syntax Specification

Jira Workflow Toolbox uses a powerful parser for interpreting expression with logical, mathematical, date-time and string-text terms. This parser
is a fundamental part of the plugin, and is used by various features in the plugin.

Usage examples:

Boolean Expressions Examples
Examples of Issue List expressions
Examples of String List expressions
Examples of Math-Time expressions
Examples of Parser Expressions

There are five types of expressions that can be parsed:

® Mathematical and Time: returns a number. When it represents a Date or Time, it returns the number of milliseconds elapsed since
January 1, 1970, 00:00:00 GMT
Examples:
°o(1*2)/ 3
© (1 + 3 * {10000}) / abs({10001}) :simple arithmetical formula that uses the value of a number field (field code {10000}),
and a function that returns the absolute value of another field (field code {1000

filterByPredicate(linkedl ssues

1}).

© {00012} + 2 * {HOUR} : adding 2 hours to Due Date (field code {00012}).

© round(({00012} - {00057}) / {HOUR}) : calculate the number of hours from Current date and time (field code {00057}) to
Due Date (field code {00012}).

® Text-String: returns a string. This kind of expressions is used in advanced mode of post-function Copy parsed text to a field .
Examples:
© "Hello" + " " + "world" + "." :concatenating 4 string literals.
O trim % 00000}) : removing leading and trailing blanks from Summary.
O 9400001} + "\ nLAST USER: " + toUpper Case(% 00021}) : adding to Description (field code %{00001}) a new line with
string "LAST USER: " and the name of current user (field code %{00021}) in upper case.

® Boolean (also known as Logical): it returns a logical value t rue or f al se .
Examples:

O 9410005} = "Yes" :compares the value stored in a field with literal string " Yes" .

O datePart ({00012}, LOCAL) > datePart ({00057}, LOCAL) : returns true only if Due Date (field code {00012}) is later
than Current date (field code {00057}) in server's local timezone.

O 9410020} != null AND 9% 10021} = null :returns true only if { 10020} field is initialized and field {10021} is not initialized.

O tinePart ({00057}, LOCAL) >= 8:00 AND timePart ({00057}, LOCAL) <= 17:30: Currenttime (field code {00057})
is between 8:00 AM and 5:30 PM in server's local timezone.
Boolean Expressions Examples

® |ssue List: is used for selecting issues (is much like JQL) within Jira Workflow Toolbox expressions, and returns a list of issues.
Examples:
O subt asks() : returns the list of sub-tasks of current issue.
© |inkedl ssues("is blocked by, is caused by") :returns the list of issues linked to current one through issue link types "is
blocked by" and "is caused by".
O filterBylssueType(linkedl ssues(), "Bug, Incident") :returns the list of linked issues with issue type "Bug" or "Incide
nt".

https://marketplace.atlassian.com/29496
https://apps.decadis.net/display/JWT/Boolean+Expression+examples
https://apps.decadis.net/display/JWT/Examples+of+Issue+List+expressions
https://apps.decadis.net/display/JWT/Examples+of+String+List+expressions
https://apps.decadis.net/display/JWT/Examples+of+Math-Time+expressions
https://apps.decadis.net/display/JWT/Examples+of+Parser+expressions
https://apps.decadis.net/display/JWT/Copy+parsed+text+to+a+field
https://apps.decadis.net/display/JWT/Boolean+Expression+examples

o filterByPredicate(siblingSubtasks(), % 00028}

I'= nul I') :returns the list of sibling sub-tasks (i.e., sub-tasks of

same parent as current sub-task) which are not resolved. Note that %{00028} is field code for Resolution.

Examples of Issue List expressions

® String List: expression that returns a list of strings.
Examples:

© ["red", "blue", "green"] :literal definition of a string list with the names of 3 colors.
o fieldVval ue(% 00000}, subtasks()) :returns the list of summaries of sub-tasks of current issue. Note that %{00000} is field

code for Summary.

O toStringList (% 00094}) :returns a list with the names of the components in current issue. Note that %{00094} is field code for

Components.
Examples of String List expressions

The expected type of expression depends on the usage of the parser made but the different features of the plugin:

Feature
Boolean Condition with math, date-time or text-string terms
Boolean Validator with math, date-time or text-string terms
Parameter Conditional execution in all the post-functions
Mathematical and date-time expression calculator
Log work
Set a custom field "Urgency" depending on a combined value of issue's
Priority and "Impact" custom field
Copy parsed text to a field

Create issues and sub-tasks

Read field from issues returned by JQL query or issue list
Update issue fields

Read fields from linked issues or sub-tasks

Write field on linked issues or sub-tasks

Data types

Expected Expression type

Boolean

Boolean

Boolean

Mathematical and Time

Mathematical and Time

Boolean for conditional part of the setting rules.
Text-String and Mathematical and Time for the value
part of the setting rules.

Text-String

Issue List, String List and Mathematical for setting seeds.
Text-String for selecting project.

Issue list and Text-String for selecting parent issue.
Text-String and Mathematical and Time for the setting
field values.

Issue List for selecting issues to be linked.

Text-String and Mathematical and Time for setting the
source value.

The parser used in the plugin for mathematical, time-formulas and boolean expressions uses only three types of data:

* Number: this type of data represents numeric values, and is also used to store Date, Time and Date-Time values. When storing any of
temporal value, the number represents the milliseconds elapsed since January 1, 1970, 00:00:00 GMT. Number or Date-Time fields can

be referenced as numbers using the following notation: {nnnnn}.

® Text-String: this type of data represents any kind of text or character string. Any field type or data type is susceptible of being transformed to
text, so any field can be referenced as a text-string value using the following notation: %{nnnnn}, and %{nnnnn.i} for Cascading Select
or Multi-Cascading Select fields, where i is the index that represents the level to be accessed. (i = 0 is used for base level).

® Boolean: comparison operators return a logical value t r ue or f al se , as well as some functions may also do, e.g., isActive(string

user_name) : boolean

® [ssue List: this data type represents a collection of issues. The size may vary from 0 to any number of issues. It's returned by issue selection
or filtering functions like subtasks(), linkedIssues(), filterBylssueType(), distinct(), etc.

® Number List: this data type represents a collection of numeric values. The size may vary from 0 to any number of numeric values. It's
returned by function fieldValue(), and is used to read the value of a numeric field in a selection of issues.

® String List: this data type represents a collection of string values. The size may vary from 0 to any number of string values. It's returned by
function fieldValue(), and is used to read the value of a string field in a selection of issues.

Casting values to another type

There are two functions available for transforming types from Text-String to Number and viceversa, and also from other types to Text-String.

Function Input Output

https://apps.decadis.net/display/JWT/Examples+of+Issue+List+expressions
https://apps.decadis.net/display/JWT/Examples+of+String+List+expressions
https://apps.decadis.net/display/JWT/Boolean+condition+and+validator+with+math.+date-time+or+text-string+terms
https://apps.decadis.net/display/JWT/Boolean+condition+and+validator+with+math.+date-time+or+text-string+terms
https://apps.decadis.net/display/JWT/Mathematical+and+date-time+expression+calculator
https://apps.decadis.net/display/JWT/Log+work
https://apps.decadis.net/pages/viewpage.action?pageId=1803645
https://apps.decadis.net/pages/viewpage.action?pageId=1803645
https://apps.decadis.net/display/JWT/Copy+parsed+text+to+a+field
https://apps.decadis.net/display/JWT/Create+issues+and+sub-tasks
https://apps.decadis.net/display/JWT/Read+field+from+issues+returned+by+JQL+query+or+issue+list
https://apps.decadis.net/display/JWT/Update+issue+fields
https://apps.decadis.net/display/JWT/Read+fields+from+linked+issues+or+sub-tasks
https://apps.decadis.net/display/JWT/Write+field+on+linked+issues+or+sub-tasks

toString(numb
ern) : string

toString(humb
er n, number d
ecimals) :
string

toString(numb
er list) : string

toString(numb
erlistl,
number decim
als) : string

toString(humb
erlistl,

number decim
als, string sepa
rator) : string
Available since
version 2.2.30

toString(string
list1) : string

toString(string
list I, string sep
arator) : string
Available since
version 2.2.30

toString(issue
list I): string

toString(issue
list |, string sep
arator) : string

Available since
version 2.2.30

toNumber(strin
g s) : number

tolnteger(strin
g s, string radix
) : number
Available since
version 2.2.12

toStringList(st
ring s, string se
parators) :
string list

numeric or date-time value

numeric value

list of numeric values

list of numeric values

list of numeric values

list of string values

list of string values

list of issues

list of issues

string

string

string with a list of tokens separated by one or
more characters

Returns a string with the decimal representation of the numeric value in n.
Numeric value of a Date-Time field is number of milliseconds elapsed
since January 1, 1970, 00:00:00 GMT.

Example: t oSt ri ng(3. 141592) returns " 3. 141592" .

Returns a string with the decimal representation of the numeric value in n
limiting the fractional part to the number of digits in parameter decimals.

Example: t oSt ri ng(3. 141592, 2) returns"3. 14" .

Returns a string with a comma separated list of decimal representation of
the numeric values in |.

Example:toString([1, 2, 3, 4.0]) returns"1, 2, 3, 4".

Returns a string with a comma separated list of decimal representations of
the numeric values in |, with the number of characters in the decimal part
specified by parameter decimals.

Example:toString([1. 123, 2.452, 3.64612], 2) returnsthe
following string: " 1. 12, 2.45, 3.65" .

Returns a string with a list of decimal representations of the numeric
values in I, with the number of characters in the decimal part specified by
parameter decimals and separated by string separator.

Example:toString([1. 123, 2.452, 3.64612], 2, " : ") return
s the following string: " 1. 12 : 2.45 : 3.65" .

Returns a string with a comma separated list of string values in |.

Example:toString(["Hello", " ", "world", "!"]) returns " He
Ilo, , world, !".

Returns a string a list of string values in | separated by string separator.

Example:toString(["blue", "red", "green"], "; ") returns”
bl ue; red; green".

Returns a string with a comma separated list of issue keys.

Example: t oSt ri ng(subt asks()) returns"CRM 5, CRM 6" , being C
RM-5 and CRM-6 the keys of current issue's sub-tasks.

Returns a string with a list of issue keys separated by string separator.

Example: t oSt ri ng(subt asks(), " ") returns"CRM5 CRM 6",
being CRM-5 and CRM-6 the keys of current issue's subtasks.

Returns the numeric value represented by the string s. This function
expects a decimal representation of a number. In case it is not possible to
parse the s to number, nul | is returned. Versions previous to 2.2.8 return
an error message shown and conditions and validators returned f al se .

Example: t oNunber (" 3. 14") returns 3. 14 .

returns the numeric value represented by the string s as a signed integer
in the radix specified by argument radix.

Example: t ol nt eger ("ff", 16) returns 255 .

Returns a list of strings with tokens in argument s separated by characters
in argument separators. Leading and trailing spaces around each token
are automatically removed.

Example:toStri ngLi st ("red, orange, yellow, green; blue;
purple", ",;") returns the following string list: ["red", "orange",
"yellow', "green", "blue", "purple"] .

toStringList(m field code for a multi-value field in format %{nnnnn} = Returns a list of strings representing each of the values selected in the

ulti-valued field @ . Multi-valued fields are Multi Select, Checkboxes, field.
field) : string Components, Versions, Multi User Picker, Multi
list Group Picker, Issue Pickers, s and Labels. Example: t oSt ri ngLi st (9% 00094}) returns a list of strings with each
Attachment of the components selected in current issue.
toNumberList(= string with a list of numbers in decimal This function expects in argument s a string containing numbers in
string s, string representation separated by one or more characters ' decimal representation separated by characters in argument separators,
separators) : and returns a list of numbers.
number list
Example: t oNunber Li st ("1, 3, 5; 7; 11; 13", ",;") returns
the following numberlist: [1, 3, 5, 7, 11, 13] .
issueKeysTol string with a comma separated list of issue keys Returns an issue list with all issues with keys in argument issue_keys.
ssueList(string Argument issue_keys is a string containing a comma separated list of iss
issue_keys) : ue keys. Since version 2.2.36 it also admits issue IDs.
issue list

Example: i ssueKeysTol ssuelLi st ("CRWM 12, HT-254") returns an
issue list with issues with keys CRM-12 and HT-254.

Automatic casting from Number to Text-String: Whenever you write a numeric term at the right-hand side of concat operator + or a comparison
operator like =, and the left-hand side is occupied by a text-string term, the parser will automatically transform the right-hand side term into a string

® +(string concat): "H s age is + 30isequivalentto"H s age is " + toString(30) .
® = (any comparison operator): 30" = 30 is equivalentto "30" = toString(30) .

Comparison operators

The following comparison operators are available for types Number, Text-String, Number List, String List and Issue List. Operators = and ! = are
also available for type Boolean.:

Operator Meaning Examples (all examples return t r ue)

= equal to 1 =1
"HELLO' = toUpper Case("Hello0")
%4 00001} = {00068} , auto-casting numeric field {00068} to Text-String.
% 00068} = toString({00068}) , explicit casting of numeric field {00068} to Text-String.
true = true
%4 10001} = nul | , for checking whether field with code %{10001} is not initialized.
[1, 2, 3] =1[1, 2, 3] ,when used with lists elements existence and its order are evaluated.

["blue", "red", "green"] = ["blue", "red", "green"]
1= not equal 0!=1
to "HELLO' !'= "Hell 0"
% 00001} != "Hello"
true != fal se
{10010} != null , for checking whether the numeric field with code {10010} is initialized.
[1, 2, 3] '=1[1, 3, 2] ,when used with lists elements existence and its order are evaluated.
["blue", "red", "green"] !=["blue", "green", "red"]
< lowerthan | 1 < 2

"abc" < "bbc"
"abc" < "abcd"

> greater 2>1
than "bbc" > "abc"
"abcd" > "abc"

<= less than -
or equal to

>= greater -
than or
equal to

~ contains "Hello world!" ~ "world" ,checks whether a string contains a substring.
% 00125} ~ 9% 00020} , checks whether "Component leaders" contains "Current user".
l'i nkedl ssues() ~ subtasks() , checks whether all sub-tasks are also linked to current issue.
[1, 2, 3, 2, 2, 4] ~ [2, 1, 2] ,when used with lists cardinalities must match.
["blue", "red", "green", "red", "white", "red"] ~ ["red", "green", "red"]
(["green", "red"] ~ ["red", "green", "red"]) = false

https://apps.decadis.net/display/JWT/JWT+Release+Notes+2.2.36

in

not in
any in
none in

doesn't
contain

is
contained
in

isn't
contained
in

some
element is
in

no single
element is
in

"world" !'~ "Hello world!"

%4 00074} !~ 9% 00077} , checks whether "Fix version/s" doesn't contain all versions in "Affects version/s".
fiel dval ue(% 00006}, |inkedlssues()) !~ fieldVal ue(% 00006}, subtasks()) ,checks whether
linked issues reporters don't include all sub-tasks reporters (%{00006} is field code for "Reporters").

[1, 2, 3, 2, 2, 4 !~ [2, 1, 1, 4] ,when used with lists cardinalities must match.

["blue", "red", "green", "red", "red"] !~ ["red", "green", "green", "red"]

"world" in "Hello world!" ,tocheck whether a substring is contained in a string.

%4 00020} in % 00125} , checks whether "Current user" is contained in "Component leaders".

subt asks() in |inkedl ssues() , checks whether all sub-tasks are also linked to current issue.

[1, 1, 2] in[2, 1, 1, 1, 4], cardinality must match.

["blue", "red", "red"] in ["red", "green", "blue", "red", "red"] , cardinality must match.
2in[1, 2, 3]

"blue" in ["red, "blue", "white"]

"Hello world!" not in "world"

% 00077} not in 9% 00074} , checks whether not all versions in "Affects version/s" are contained in "Fix version
/s".

fiel dval ue(% 00006}, subtasks()) not in fieldValue(% 00006}, |inkedlssues()) ,checks
whether not all sub-tasks reporters are included in linked issues reporters (%{00006} is field code for "Reporters").

[1, 1, 2, 2] not in[2, 1, 1, 1, 4], cardinality must match.

["blue", "red", "red", "blue"] not in ["red", "blue", "red", "red"] ,cardinality must match.
5not in[1, 2, 3, 3, 4]
"orange" not in ["blue", "red", "white"]

%4 00077} any in % 00074} , checks whether any version in "Affects version/s" is contained in "Fix version/s".
fiel dval ue(% 00006}, subtasks()) any in fiel dval ue(% 00006}, |inkedlssues()) ,checks
whether any sub-task's reporter is present among linked issues reporters (%{00006} is field code for "Reporters").
[1, 3] any in [3, 4, 5]

["blue", "white"] any in ["black", "white", "green"]

% 00077} none in % 00074} , checks whether there isn't a single version "Affects version/s" in "Fix version/s".
fiel dval ue(% 00006}, subtasks()) none in fieldVal ue(% 00006}, |inkedlssues()) ,checks
whether there isn't a single sub-task reporter among linked issues reporters (%{00006} is field code for "Reporters").
[1, 2] none in [3, 4, 5]

["blue", "red"] none in ["black", "white", "green"]

Case Ignoring Comparison operators (since version 2.2.42)

The following comparison operators are applicable to String and String List types. This operators have the peculiarity that ignores the case of the

characters.

Operator

Meaning Examples (all examples return tr ue)
equal to "HELLO' =~ "Hell 0"
“up" =~ "UP"
["blue", "red", "green"] =~ ["Blue", "RED', "Geen"]
not equal to " HELLO' !=~ "Hello"
"up" !'=~ "down"
("up" =~ "UP") = false
["blue", "red"] !=~ ["Blue", "green"]
["blue", "red"] !=~ ["Red", "BLUE"]
(["blue", "red", "green"] !=~ ["Blue", "RED', "Geen"]) = fal se
contains "Hello World!" ~~ "world" , checks whether a string contains a substring.
"A small step for a man" ~~ "STEP" , checks whether a string contains a substring.
["one", "two", "three"] ~~ ["TWD', "One"] ,checks whether a string list contains all the elements of
another string list.
doesn't contain "Hello World!" !'~~ "bye" , checks whether a string doesn't contain a substring.
"A small step for a man" !~~ "big" , checks whether a string doesn't contain a substring.
"one", "two", "three"] !~~ ["Four"] , checks whether a string list doesn't contain one element of
another string list.
(["one", "two", "three"] !~~ ["TWD']) = false
is contained in "world" in~ "Hello World!" , checks whether a substring is contained in another string.

"STEP" in~ "A small step for a man" , checks whether a substring is contained in another string.
["TWD', "One"] in~ ["one", "two", "three"] ,checks whether all the elements of a string list are
contained in another string list.

not in~ isn't contained in ~ "bye" not in~ "Hello Wrld!" , checks whether a substring is not contained in another string.
"big" not in~ "A snall step for a man" , checks whether a substring is not contained in another
string.
[*Four"] not in~ ["one", "two", "three"] , checks whether any of the elements of a string list are not
contained in another string list.
(["TWD'] not in~ ["one", "two", "three"]) = fal se

any in~ some elementis | ["blue", "violet"] any in~ ["Blue", "Red", "Geen"]
in ["Five", "One"] any in~ ["FOUR', "FIVE", "SIX']

none in~ | nosingle ["Orange"] any in~ ["red", "blue", "green"]
elementis in (["orange"] any in~ ["Red", "Orange"]) = false

Applicable Data Types

Comparison Operator Boolean Number String Number List String List Issue List Multi-Valued Fields
= X X X X X X X
1= X X X X X X X
< X X - - R
> X X - - R
<= X X - - -
>= X X - - -
~ - X X X X X
[- X X X X X
in - X X X X X
not in - - X X X X X
any in - - - X X X X
none in - - - X X X X
=~ - X - X - -
| =~ - X - X - -
— B X B X R R
|~ - X - X - -
in~ - X - X - -
not in~ - - X - X - -
any in~ - - - - X - -
none in~ - - - - X - -
Notice that:
® Operators ~, ! ~, i n and not i n can be used for checking a single element (number or string) against a number list or a string list.
Example:1 in [1, 2, 3] or["blue", "red"] ~ "blue".
® Operators ~, ! ~,in and not i n when used with string are useful to look for substrings in another string. Example: "1 | ove codi ng"
~ "love" but"l don't |ike Mondays" !~ "Fridays",or"love" in "I love coding" but"Fridays" not in "l don't
I'i ke Mondays" .
® Operators ~, !~ in and not in respectcardinality, i.e., container list must have at least the same number of elements as contained list.

Example:[1, 1] in [1, 1, 1] but[1, 1] not in [1, 2, 3] .

® Operators = and ! =, when used for comparing lists, require to have the same elements, with the same cardinality and the same order.
Example:[1, 2, 3] =[1, 2, 3] but[4, 5, 6] !'=1[4, 6, 5].

® Operators <, >, <= and >= work according to lexicographical order when comparing strings.

About types:

® String: "Hel l o worl d"

® Number:1,1.1,-1.1,.1,-.1

® Multi-valued fields are Multi Select, Checkboxes, Components, Versions, Multi User Picker, Multi Group Picker, Issue Pickers, Attachments
and Labels.

® [ssue list: Returned by functions like subt asks(), |inkedlssues(), transitionLinkedl ssues(), filterByFieldValue(),
filterByStatus(), filterBylssueType(), filterByResolution(), filterByProject(), append(), union(),
except (), intersect() and distinct().

® String list: Returned by functions like fi el dval ue(), append(), union(), except(), intersect() and distinct().Can
also be written as literals, e.g., ["string_A", "string_B", "string_C']

® Number list: Returned by functions like f i el dval ue(), append(), union(), except(), intersect() and distinct(). Can
also be written as literals, e.g.,[1, 2, 3]

WARNING:

® QOperators ~, ! ~, i nand not i n are available since version 2.1.21.
® QOperators any i nandnone i n are available since version 2.1.22.
® Operators =~, ! =~, ~~, I ~~ in~,not in~ any in~andnone in~ are available since version 2.2.2.

Boolean terms

Literals

Only 2 logic literals values are possible: t rue and f al se .

Logical connectives

The following logical connectives can be used for linking logical terms in a expression, i.e., terms that return a boolean value type (true or false).

Operator Meaning Precedence
NCT or ! logical negation 1 (highest)
ANDor & logical conjunction 2
ORor | logical disjunction 3
XOR exclusive or, i.e.,a XOR b is equivalenttoa AND !'b OR !a AND b 3
| MPLI ESor | MP | logical implication, i.e.,a | MPLI ES b is equivalentto!a OR b 4
XNOR or EQV logical equivalence, i.e.,a EQV b is equivalenttoa | MPLIES b AND b | MPLIES a @ 4 (lowest)

Logical connectives are case insensitive, i.e., they can also be written in lower case: or, and, not , xor , i npl i es, i np, eqv and xnor .

Conditional operator ?

(Available since version 2.1.23)
Operator ? : is similar to the one available in languages like C, C++ and JAVA.

® Format: <boolean_expression> ? <term_1>: <term_2>
where <term_1> and <term_2> are terminus of the same type (boolean, number, string, issue list, string list or number list).

® Behavior: Its used to construct conditional expressions. The operator evaluates boolean_expression, and if it's true value of term_1 is
returned, otherwise term_2 is returned. It behaves like: IF boolean_expression THEN term_1 ELSE term_2.

Examples:

e {00012} != null ? ({00012} - {00057}) / {HOUR} : O, if Due Date isnotnul | , itwill return the number of hours from current
date-time to Due Date, otherwise it will return O .

® tinePart ({00057}, LOCAL) > 21:00 AND tinePart ({00057}, LOCAL) < 7:00 ? "Night" : "Day" ,itwillreturn"N ght" if
current time is between 21:00 and 7:00, otherwise it will return " Day" .

Numbers and Date-Time terms

Literal values

® Examples of valid numerical literal values: 1,3.0,4.2,.5,-400,-1.1,-11.5,-.02

® Date-time literal formats: yyyy/MM/dd [hh:mm] or yyyy-MM-dd [hh:mm] , e.g., 2011/ 03/ 25 23:15,2011- 03-25 23: 15,2011/ 03/ 25
and 2011- 03- 25

® Time literal values format: hh:mm , e.g., 08: 15, 23: 59, 00: 00

Field values
Numeric value of Number, Date, Date-Time and Priority fields can be inserted in expressions with following notation {nnnnn}, e.g., use { 00012} for

Due Date, and { 00073} for Number of attachments.
For checking if a field is initialized you can use {nnnnn} = null or {nnnnn} != null

Math Functions

Function

abs(number x) : number

acos(number x) : number
Available since version 2.2.7

asin(number x) : number
Available since version 2.2.7

atan(number x) : number
Available since version 2.2.7

ceil(number x) : number
cbrt(number x) : number
Available since version 2.2.7

cos(number x) : number
Available since version 2.2.7

cosh(number x) : number
Available since version 2.2.7

floor(number x) : number
log(number x) : number
Available since version 2.2.7

log10(number x) : number
Available since version 2.2.7

max(number X, number y) : number
min(number x, number y) : number
modulus(number dividend, number divisor
) : number

Available since version 2.2.7

pow(number x, number y) : number

random() : number

remainder(number dividend, number divis
or) : number

round(number x) : number

sin(number x) : number
Available since version 2.2.7

sinh(number x) : number
Available since version 2.2.7

sqrt(number x) : number

tan(number x) : number
Available since version 2.2.7

tanh(number x) : number
Available since version 2.2.7

toDegrees(number x) : number
Available since version 2.2.7

toRadians(number x) : number
Available since version 2.2.7

Date-Time Functions

Returned value

Returns the absolute value of x, i.e., if x>0 it returns x, otherwise it returns -x.

Returns the arc cosine of x; the returned angle is in the range 0.0 through pi.

Returns the arc sine of x; the returned angle is in the range 0.0 through pi.

Returns the arc tangent of x; the returned angle is in the range 0.0 through pi.

Returns the smallest (closest to negative infinity) value that is larger than or equal to x and is equal
to a mathematical integer.

Returns the cube root of x.

Returns the trigonometric cosine of angle x expressed in radians.

Returns the hyperbolic cosine of x.

Returns the largest (closest to positive infinity) value that is less than or equal to x and is equal to a

mathematical integer.

Returns the natural logarithm (base e) of x.

Returns the base 10 logarithm of x.

Returns the larger of two numeric values.
Returns the smaller of two numeric values.
Returns di vi dend - (divisor * floor(dividend / divisor)) .
Returns x raised to the powery.

Returns a value with a positive sign, greater than or equal to 0.0 and less than 1.0.

Returns di vi dend - divisor * n,wheren is the closest integer to di vi dend / di vi sor .

Returns the closest integer to x.

Returns the trigonometric sine of angle x expressed in radians.

Returns the hyperbolic sine of x.

Returns the square root of x.

Returns the trigonometric tangent of angle x expressed in radians.

Returns the hyperbolic tangent of x.

Converts an angle x measured in radians to an approximately equivalent angle measured in
degrees.

Converts an angle x measured in degrees to an approximately equivalent angle measured in
radians.

Fields of type Date and Date and Time contain a numeric value with the milliseconds elapsed since January 1, 1970, 00:00:00 GMT. We usually
need to get significative numbers from this numeric value, like YEAR, MONTH, DAY, HOUR, MINUTE, etc. To do it, Jira Workflow Toolbox provides
a comprehensive set of functions, all of them with TIMEZONE as input argument, since any significative number relative to a timestamp depends on

the timezone.

Available time zones Returned value

LOCAL or SERVER_LOCAL ' Returns the time zone configured for the server running Jira.

USER_LOCAL Returns the time zone of the current user.

RUN_AS_LOCAL Returns the time zone of the selected Run as user.

Timezone Code Injector Timezone

LOCAL or SERVER LOCAL T Jira server's timezone.
USER_LOCAL see timezone of current logged user.
RUN_AS_LOCAL T timezone of configured Run as user.

ACT v

absolute timezones

Available languages Returned value

SERVER_LANG Returns the default language configured for the server running Jira.
USER_LANG Returns the language of the current user.
RUN_AS_LANG Returns the language of the selected Run as user.

Languages

Language Code

Injector Language

SERVER_LANG T default language configured in Jira server,

USER_LANG T language configured for the current user, i.e, the user executing the transition,
RUN_AS LANG T language configurad for the user which is selected as the Run as user,
Function Returned value

timePart(number t, timeZone tim
e_zone) : number

datePart(number t, timeZone tim
e_zone) : number

second(number t, timeZone time
_zone) : number

minute(number t, timeZone time
_zone) : number

hour(number t, timeZone time_z
one) : number

Returns the time part of timestamp represented by numeric value t in time_zone time zone.
Example: for timestamp March, 25th 2011 23:15 this function returns a numeric value representing time 23:15
in milliseconds.

Returns the date part of timestamp represented by numeric value t in time_zone time zone.
Example: for timestamp March, 25th 2011 23:15 this function returns a numeric value representing date March
, 25th 2011 00:00 in milliseconds.

Returns the seconds figure of timestamp represented by numeric value t in time_zone time zone.
Example: for timestamp March, 25th 2011 23:15:30 this function returns a numeric value representing 30
seconds in milliseconds.

Returns the minutes figure of timestamp represented by numeric value t in time_zone time zone.
Example: for timestamp March, 25th 2011 23:15:30 this function returns a numeric value representing 15
minutes in milliseconds.

Returns the hours figure of timestamp represented by numeric value t in time_zone time zone.
Example: for timestamp March, 25th 2011 23:15:30 this function returns a numeric value representing 23
hours in milliseconds.

https://marketplace.atlassian.com/plugins/com.fca.jira.plugins.workflowToolbox.workflow-toolbox

dayOfTheWeek(number t,
timeZone time_zone) : number

dayOfTheMonth(number t,
timeZone time_zone) : number

month(number t, timeZone time_
zone) : number

year(number t, timeZone time_z
one) : number

addDays (number t, number n
, timeZone time_zone)

: number

Available since version 2.3.3

addMonths(number t, number n,
timeZone time_zone) : number

addYears(number t, number n,
timeZone time_zone) : number

addTimeSkippingWeekends(nu
mber t, number timeToBeAdded,
timeZone time_zone) : number

addTimeSkippingWeekends(nu
mber t, number timeToBeAdded,
timeZone time_zone, number be
ginning_of_weekend, number e
nd_of_weekend) : number
Available since version 2.2.7

addDaysSkippingWeekends(nu
mber t, number n, timeZone time
_zone) : number

addDaysSkippingWeekends(nu
mber t, number n, timeZone time
_zone, number beginning_of_w
eekend, number end_of_weeke
nd) : number

Available since version 2.2.7

subtractDatesSkippingWeeken
ds(number minuend_date,
number subtrahend_date,
timeZone time_zone) : number

subtractDatesSkippingWeeken
ds(number minuend_date,
number subtrahend_date,
timeZone time_zone, number be
ginning_of_weekend, number e
nd_of_weekend) : number
Available since version 2.2.7

Returns the day of the week of timestamp represented by numeric value t in time_zone time zone, with
Sunday = 1, Monday = 2, ... Saturday = 7.

Example: for timestamp March, 25th 2011 23:15 this function returns 6 for Friday, represented also by macro {
FRI DAY} .

Returns the day of the month of timestamp represented by numeric value t in time_zone time zone.
Example: for timestamp March, 25th 2011 23:15 this function returns 25.

Returns the month of a timestamp represented by numeric value t in a certain time zone, with January = 1,
February = 2, ... December = 12.
Example: for timestamp March, 25th 2011 23:15 this function returns 3 for March, represented also by macro {

MARCH} .

Returns the year of a timestamp represented by numeric value t in a certain time zone.
Example: for timestamp March, 25th 2011 23:15 this function returns 2011 .

Returns a timestamp resultant of adding n days to timestamp t . You should use this function instead of
simply adding n * { DAY} , since { DAY} is a macro equivalentto 24 * {HOUR} , not taking into account
that once in a year we have a day with 25 or 23 hours due to DST transition. Negative values for n are used in
order to subtract instead of adding.
Example: addDays(2018/03/27 01: 00, -2, LOCAL) returns 2018/ 03/25 01:00 .

Returns a timestamp resultant of adding n months to timestamp t. You should use this function instead of
simply adding n * { MONTH} , since { MONTH} is a macro equivalentto 30 * { DAY} , not taking into account
that some months has more or less than 30 days. Negative values for n are used in order to subtract instead of
adding.

Example: for timestamp t with value March, 25th 2011 23:15 calling to addMont hs(t,
return a timestamp with value June, 25th 2011 23:15.

3, LOCAL) will

Returns a timestamp resultant of adding n years to timestamp t. You should use this function instead of simply
adding 12 * { MONTH} or 365 * { DAY} , since that won't take into account that some years have 366 days.
Negative values for n are used in order to subtract instead of adding.

Example: for timestamp t with value March, 25th 2011 23:15 calling to addYear s(t,
return a timestamp with value March, 25th 2021 23:15.

10, LOCAL) will

Adds timeToBeAdded to t with the difference that weekends don't count in the sum, e.g., if t represents a date-
time which coincides with a Saturday, adding timeToBeAdded =2 * {HOUR} will return a date-time for next
Monday at 02:00 . Use negative values at timeToBeAdded for subtracting time from t.

Same as previous function, but with a custom defined weekend. Arguments beginning_of_weekend and end_
of_weekend take values { MONDAY} , { TUESDAY} ... { SUNDAY} .

Example of usage for adding 12 hours to Current date and time using Israeli weekend: addTi meSki ppi ng\\e
ekends({00057}, 12 * {HOUR}, LOCAL, {FRI DAY}, {SATURDAY}) ,being {00057} field code for Cu
rrent date and time.

Returns a timestamp equivalent of t + n*{ DAY} with the difference that weekends don't count in the sum, e.
g., if t represents a timestamp which coincides with a Friday, adding n = 1 will return a date-time for next
Monday. Negative values for n are used in order to subtract days to t.

Note: n cannot be higher than 50000.
Example: Set "Due date" 6 natural days (or work days) earlier than a "Date Picker" custom field

Same as previous function, but with a custom defined weekend. Arguments beginning_of_weekend and end_
of_weekend take values { MONDAY} , { TUESDAY} ... { SUNDAY} .

Note: n cannot be higher than 50000.

Example of usage for adding 10 workdays to Due date using Israeli weekend: addDays Ski ppi ng\Weekends
({00012}, 10, LOCAL, {FRI DAY}, {SATURDAY}) ,being {00012} field code for Due date.

Returns a timestamp equivalent "minuend_date - subtrahend_date" subtracting weekend periods from the
result, i.e., you get the elapsed working time from subtrahend_date to minuend_date.

Same as previous function, but with a custom defined weekend. Arguments beginning_of_weekend and end_
of_weekend take values { MONDAY} , { TUESDAY} ... { SUNDAY} .

Example of usage calculating the worktime from Creation to Resolution using Israeli weekend: subt r act Dat
esSki ppi ngWeekends ({00112}, {00009}, LOCAL, {FRI DAY}, {SATURDAY}) ,being {00112} field
code for Resolution date and time, and {00009} field code for Creation date and time.

https://apps.decadis.net/pages/viewpage.action?pageId=1803585

dateToString(number t,
timeZone time_zone, language)
: string

dateTime(number year, number
month, number dayOfMonth,
number hourOfDay, number min
ute, timeZone time_zone) :
number

Available since version 2.3.3

dateTimeToString(number t,
timeZone time_zone, language)
: string

dateTimeToString(number t,
string date_time_pattern , langu
age) : string

Available since version 2.1.33

dateTimeToString(number t,
string date_time_pattern , timeZ
one time_zone, language) :
string

Available since version 2.4.0

daysIinTheMonth(number t,
timeZone time_zone) : number

Available since version 2.3.3

monthToString(number t,
timeZone time_zone, language)
: string

dayOfTheWeekToString(number
t, timeZone time_zone, language
) : string

stringToDate(string s, timeZone
time_zone) : number
Available since version 2.1.26

stringToDate(string s, string dat
e_time_pattern) : number
Available since version 2.1.33

stringToDate(string s, string dat
e_time_pattern , string language
, string country) : number
Available since version 2.2.29

Returns a string representing the date-time value at t, in a certain time zone, and in a certain language. This
function is useful in post-function Copy parsed text to a field to represent as a string the result of a time
expression.

This function is used for obtaining a date-time literal value from a set of numeric values representing a date-
time timestamp.
Example: dat eTi me(2018, 03, 25, 23, 15, LOCAL) returns 2018/ 03/ 25 23: 15.

Returns a string representing the date-time value at t, in a certain time zone, and in a certain language. This
function is useful in post-function Copy parsed text to a field to represent as a string the result of a time
expression.

Returns a string representing the date-time value at t with a certain custom format defined by date_time_pattern
string parameter, using a certain language when using words for months, days of the week, etc. This function is
useful in post-function Copy parsed text to a field to represent as a string the result of a time expression.
Example: dat eTi meToSt ri ng(2011-03-25 11:30, "yyyy.MMdd 'at' HH mmss", USER LANG r
eturns string "2011.03.25 at 11:30:00".

Returns a string representing the date-time value at t with a certain custom format defined by date_time_pattern
string parameter, in a certain timezone time_zone, using a certain language when using words for months,

days of the week, etc. This function is useful in post-function Copy parsed text to a field to represent as a
string the result of a time expression.

Example: dat eTi meToString(0, "yyyy.MW dd 'at' HH:nmss", GMI, USER_LANG) returns string"
1970.01.01 at 00:00:00".
Example: dat eTi neToStri ng(0, "yyyy.MMdd 'at' HH mmss", MST, USER_LANG) returns string"

1969.12.31 at 17:00:00".

Returns the number of days in the month of timestamp t in timezone time_zone.
Example: daysl nTheMont h(2016/ 02/ 28 00: 00, LOCAL) returns 29, taking into account that 2016 is a
leap year.

Returns a string with the name of the month for a date-time t, in a certain time zone, and in a certain language
. This function can be used in post-function Copy parsed text to a field to write the name of the month of a
date-time field or expression.

Returns a string with the day of the week for a date-time t, in a certain time zone, and in a certain language.
This function is useful in post-function Copy parsed text to a field to write the day of the week of a date-time
field or expression.

Returns a numeric value with the date-time represented by string s. The numeric value returned corresponds to
the milliseconds elapsed since January 1, 1970, 00:00:00 GMT. Valid input string formats are yyyy/MM/dd
HH:mm, yyyy-MM-dd HH:mm, yyyy/MM/dd, yyyy-MM-dd, also formats relative to current time like in JQL
queries: "w" (weeks), "d" (days), "h" (hours) or "m" (minutes), or format defined at system property jira.date.
time.picker.java.format.

Example: Validation based on a Date type Project Property
Returns a numeric value with the date-time represented by string s. Expected format of value at parameter "s"
is defined by date_time_pattern string parameter. The numeric