
Operators

The JWT expression parser accepts the as well as most common comparison operators logical
 . operators

The main purpose of these operators is to construct complex logical comparisons by individual linking
expressions.

Comparison operators

The , their and the applicable you can use them with are listed below.operators meaning data types

A comparison always returns a value.BOOLEAN

Overview of all case-sensitive comparison operators

All operators respect the of the .case characters

Operator Meaning Examples (all examples return)true

= equal to
1=1
true = true
[1, 2, 3] = [1, 2, 3]
["blue", "red", "green"] = ["blue", "red", "green"]

When working with , each elements' and its are being evaluated.Lists existence order

!= not equal to
0 != 1
"HELLO" != "Hello"
%{issue.description} != "Hello"
true != false
[1, 2, 3] != [1, 3, 2]
["blue", "red", "green"] != ["blue", "green", "red"]

When working with , each elements' and its are being evaluated.Lists existence order

< less than
1 < 2
"abc" < "bbc"
"abc" < "abcd"

https://apps.decadis.net/display/JWTSDC/Lists
https://apps.decadis.net/display/JWTSDC/Lists

> greater than
2 > 1
"bbc" > "abc"
"abcd" > "abc"

<= less than or
equal to 3 <= 3

>= greater than
or equal to "Hello world! Hello *" >= "Hello world"

~ contains
"Hello world!" ~ "world" #true. The text "world" is contained in the first text.
%{issue.components.leads} ~ %{system.currentUser} #checks whether "Component leads"
contains the "Current user".
[1, 2, 3, 2, 2, 4] ~ [2, 1, 2] #true
["blue", "red", "green", "red", "white", "red"] ~ ["red", "green", "red"] #true
["green", "red"] ~ ["red", "green", "red"] #false

!~ does not
contain "Hello world!" !~ "world" #false. The text "world" is contained in the first text.

%{issue.fixVersions} !~ %{issue.versions} #false if all "Affects version/s" are
also selected as "Fix version/s".
[1, 2, 3, 2, 2, 4] !~ [2, 1, 1, 4] #true
["blue", "red", "green", "red", "red"] !~ ["red", "green", "green", "red"] #true

in is contained
in "world" in "Hello world!" #true. The text "world" is contained in the first text.

%{system.currentUser} in %{issue.components.leads} #true if current user is a
component lead of any of the issue's components
[1, 1, 2] in [2, 1, 1, 1, 4] #true
["blue", "red", "red"] in ["red", "green", "blue", "red", "red"] #true
2 in [1, 2, 3] #true
"blue" in ["red, "blue", "white"] #true

not in is not
contained in "Hello world!" not in "world" #true

%{issue.versions} not in %{issue.fixVersions} #false if all "Affects version/s" are
also selected as "Fix version/s".
[1, 1, 2, 2] not in [2, 1, 1, 1, 4] #true
["blue", "red", "red", "blue"] not in ["red", "blue", "red", "red"] #true
5 not in [1, 2, 3, 3, 4] #true
"orange" not in ["blue", "red", "white"] #true

any in any element
is in %{issue.versions} any in %{issue.fixVersions} # true if any selected "Affects

version/s" has also been selected as "Fix version/s".
[1, 3] any in [3, 4, 5] #true
["blue", "white"] any in ["black", "white", "green"] #true

none in no single
element is in %{issue.versions} none in %{issue.fixVersions} #true if no selected "Affects version

/s" has also been selected as "Fix version/s".
[1, 2] none in [3, 4, 5] #true
["blue", "red"] none in ["black", "white", "green"] #true

When comparing lists, the of occurence (cardinality) per element must match. exact number

Parser expression Output Description

["blue", "red", "green", "red",
"white", "red"] ~ ["red", "green",
"red"]

true This expression returns , since the element (text) appears at true red
least in the first list and the element (text) occurs at least twice green once
in the first list.

["green", "red"] ~ ["red",
"green", "red"]

false This expression returns , since the element (text) does false red not app
 in the first list. ear twice

Overview of all case ignoring comparison operators

The following comparison operators can be used with and .TEXT TEXT LIST data types

All operators the of the .ignore case characters

Operator Meaning Examples (all examples return)true

=~ equal to

"HELLO" =~ "Hello" #true
"up" =~ "UP" #true
["blue", "red", "green"] =~ ["Blue", "RED", "Green"] #true

!=~ not equal to

" HELLO" !=~ "Hello" #false, since there is a whitespace in the first text
"up" !=~ "down" #true
("up" !=~ "UP") #false
["blue", "red"] !=~ ["Blue", "green"] #true
["blue", "red"] !=~ ["Red", "BLUE"] #true
["blue", "red", "green"] !=~ ["Blue", "RED", "Green"] #false

~~ contains

"Hello World!" ~~ "world" #true, checks whether a text contains a substring.
"A small step for a man" ~~ "STEP" #true
["one", "two", "three"] ~~ ["TWO", "One"] #true, checks whether a text list contains
all the elements of another text list.

!~~ does not
contain "Hello World!" !~~ "bye" #true, checks whether a text does not contain a substring.

"A small step for a man" !~~ "big" #true
["one", "two", "three"] !~~ ["Four"] #true, checks whether a text list does not
contain a single element of another text list.
(["one", "two", "three"] !~~ ["TWO"]) = false

https://apps.decadis.net/display/JWTSDC/Data+types

in~ is contained
in

"world" in~ "Hello World!" #true, checks whether a substring is contained in another
text.
"STEP" in~ "A small step for a man" #true
["TWO", "One"] in~ ["one", "two", "three"] #true, checks whether all the elements of
a text list are contained in another text list.

not in~ is not
contained in "bye" not in~ "Hello World!" #true, checks whether a substring is not contained in

another text.
"big" not in~ "A small step for a man" #true
["Four"] not in~ ["one", "two", "three"] #true, checks whether any of the elements
of a text list are not contained in another text list.
["TWO"] not in~ ["one", "two", "three"] #false

any in~ any
element is in

["blue", "violet"] any in~ ["Blue", "Red", "Green"] #true
["Five", "One"] any in~ ["FOUR", "FIVE", "SIX"]"bye" #true

none
in~

no single
element is in ["Orange"] none in~ ["red", "blue", "green"] #true, checks whether none of the

elements of a text list are not contained in another text list.
["orange"] none in~ ["Red", "Orange"] #false

Applicable data types

Below you find a comprehensive matrix of all operators and applicable data types .

Comparison
Operator

BOOLEAN NUMBER TEXT NUMBER LIST TEXT LIST ISSUE LIST

=

!=

< - - - -

> - - - -

<= - - - -

>= - - - -

~ - -

!~ - -

in - -

not in - -

any in - - -

none in - - -

=~ - - - -

!=~ - - - -

~~ - - - -

!~~ - - - -

in~ - - - -

not in~ - - - -

any in~ - - - - -

none in~ - - - - -

Please be aware the both operands of the respective comparison must have the . The only exceptions are the following: same data type

Automatic casting from to : NUMBER TEXT Whenever you write a numeric term at the right-hand side of a c
 like =, and the left-hand side is occupied by a text term, the parser will automatically transform the right-hand omparison operator

side term into a text (e.g. "30" = 30 will be interpreted the same way as "30" = "30")
Single values as operand in list operations: Operators and can be used for checking a single element ~, !~, in not in (

 against a or a or)NUMBER TEXT NUMBER LIST TEXT LIST

Comparison with the null value: A which is not set or an empty text is interpreted as . A field, which field null NUMBER

doesn't contain a number, is also interpreted as . null

Things to remember

Remember Examples

Operators and can be ~, !~, in not in used for checking a single element (NUMBER

 or)TEXT against a NUMBER LIST or a TEXT LIST
1 in [1, 2, 3]
["blue", "red"] ~ "blue"

Operators and when used with a are useful to look for substrings in another ~, !~, in not in text
string. "I love coding" ~ "love"

"I don't like Mondays" !~
"Fridays"
"love" in "I love coding"
"Fridays" not in "I don't
like Mondays"

Operators and respect cardinality, i.e., container list must have at least the ~, !~, in not in
same number of elements as contained list. [1, 1] in [1, 1, 1]

[1, 1] not in [1, 2, 3]

Operators and , when used for comparing lists, require to have the , with the = != same elements same
 and the .cardinality same order [1, 2, 3] = [1, 2, 3]

[4, 5, 6] != [4, 6, 5]

Operators and work according to lexicographical order when comparing text. <, >, <= >=
1 < 2
"abc" < "bbc"
"abcd" > "abc"

Logical operators

The table below lists all logical operators that can be used for in an expression. linking logical terms

Logical operators take logical terms (which return values) as operands and can thus be built using:BOOLEAN

a boolean value
a returning a boolean valueJWT expression parser function
a comparison
a logical term enclosed by brackets ()
two logical terms connected with a logical operator, where boolean literals and comparisons themselves are logical terms.

https://apps.decadis.net/display/JWTSDC/Field+codes
https://apps.decadis.net/display/JWTSDC/JWT+expression+parser+functions

Logical can only be used in in the or in combination with the conditional operator.operators logical expressions Logical mode

Overview of all logical operators

Operator Meaning Precedence

 NOT or ! logical negation 1 (highest)

 AND or & logical conjunction 2

 OR or | logical disjunction 3

XOR exclusive or, i.e., is equivalent to a XOR b a AND !b OR !a AND b 3

 IMPLIES or IMP logical implication, i.e., is equivalent to a IMPLIES b !a OR b 4

 XNOR or EQV logical equivalence, i.e., is equivalent to a EQV b a IMPLIES b AND b IMPLIES a 4 (lowest)

A single logical term can be enclosed by in order to increase the readability of the expressions or to define a which brackets () precedence
differs from the given one.

Logical operators can also be written in lower case (e.g. ,) and or

Conditional operator

The conditional operator is a powerful operator to construct conditional expressions. ? :

It basically allows you to construct the following expression: logical_expression term_1 term_2.IF THENtrue ELSE

<logical_expression> ? <term_1> : <term_2>

The conditional operator is extremely helpful when being used in .calculated fields

Examples of using the conditional operator

https://apps.decadis.net/display/JWTSDC/Logical+mode
https://apps.decadis.net/pages/viewpage.action?pageId=27066659

Expression Description

%{issue.priority} = "Highest" ? "Please have a look at this
issue immediately" : "No stress, come back later"

IF the of an issue is ,priority Blocker

THEN this function will return "Please have a look at
"this issue immediately

ELSE it will return " ".No stress, come back later

{issue.duedate} != null ? ({...duedate} - {...currentDateTime})
/ {HOUR} : 0

IF an issue have a due date set (due date is does not
),null

THEN this function will return the number of hours
 to the from the current date-time due date

ELSE it will return . 0

%{issue.somefield} = "Red" ? "Color" : "No color"
IF a custom field (e.g. a select list) has a value of ,Red

THEN this function will return " , Color"

ELSE it will return "No color".

timePart({...currentDateTime}, LOCAL) > 21:00 AND timePart({...
currentDateTime}, LOCAL) < 7:00 ? "Night" : "Day"

IF the current time is between 21:00 and 7:00

THEN this function will return " " ,Night

ELSE it will return " ".Day

List operators

Function Short description Output

APPEND Combines the elements of two .lists LIST

UNION Returns of two lists. distinct elements LIST

INTERSECT Returns of two lists.common elements LIST

EXCEPT Removes certain elements from a list. LIST

Order of operations

If you use multiple operators in a single expression, they will follow a certain order in which they are processed or a precedence.

OPERATORS PRECEDENCE ASSOCIATIVITY

INTERSECT 1 (highest) Left-to-right

APPEND, , EXCEPT UNION 2 (lowest) Left-to-right

When using the list operators, you have to make sure that both lists that you compare are of the .same type
All operators are , i.e., they can also be written in lower case: and .case insensitive , , append union intersect except
There are available for each type of list, and their behavior is to that of its four equivalent functions exactly equivalent
corresponding operator.

append()
except()
intersect()
union()

This way, you can choose to use or according to your preference. Although operators yield shorter expressions operators functions
and with fewer parentheses, the usage of functions produces a more functional consistent syntax.

https://apps.decadis.net/display/JWTSDC/APPEND
https://apps.decadis.net/display/JWTSDC/UNION
https://apps.decadis.net/display/JWTSDC/INTERSECT
https://apps.decadis.net/display/JWTSDC/EXCEPT
https://apps.decadis.net/display/JWTSDC/INTERSECT
https://apps.decadis.net/display/JWTSDC/APPEND
https://apps.decadis.net/display/JWTSDC/EXCEPT
https://apps.decadis.net/display/JWTSDC/UNION
https://apps.decadis.net/pages/viewpage.action?pageId=29525226
https://apps.decadis.net/pages/viewpage.action?pageId=29525230
https://apps.decadis.net/pages/viewpage.action?pageId=29525232
https://apps.decadis.net/pages/viewpage.action?pageId=29525228

If you still have questions, feel free to refer to our support team.

https://apps.decadis.net/display/DECADIS/Support

	Operators

