
JQL mode

The parsing mode, just like the , lets you define a target of . It is JQL Issue list mode selection issues
being used in and , that allow you to or Post functions Automation actions create update multiple

 or , etc. issues, add delete issue links

The output has to be a as defined in the section. The input must be a valid issue list Data types valid
 where you can also use field codes.JQL query

Additionally, can be used.JWT expression parser functions

Example expressions

Parser expression Description

project = JWT and resolution = Unresolved
This example returns all in the .unresolved issues JWT project

type = Bug and project = %{issue.project.key}
This example returns a of all in the same project as the list Bugs current

.issue

issuetype = "%{issue.issueType}" AND project =
"%{issue.project.name}"

This example returns a of all issues in the and with the list same project
same as the current issue.issue type

JQL queries in JWT

JQL queries in Jira Workflow Toolbox are pretty much written like in the issue navigator. The main difference is, that can be used which Field codes
will be with at runtime.replaced the corresponding values

If field values are expected to have white spaces or JQL reserved words or characters, you should enclose the field code in quotes (double or
simple). Example: summary ~ "%{system.currentUser.displayName}" will return issues with the current user's full name in the summary. As
the full name can contain spaces, the field code is enclosed in double quotes.

Anyways, there is an to this general rule: when the field contains a , and you want to use it with the JQL exception comma-separated list of values
operator . In those cases the field code should not be enclosed in double quotes, since you want the content of the field to be processed as a IN list of

, not as a single text value.values

Example:

You have temporarily stored the issue keys of all linked issues in a field. The field now contains a comma-separated list of the Temporary text
following issue keys: "CRM-1, HR-2, HR-3".

JQL query JQL query after field code is replaced
with values

Description

key in ("%{issue.
temporaryText1}")

key in ("CRM-1, HR-2, HR-3")
This query will return any results as it is not syntactically

. incorrect

key in (%{issue.
temporaryText1})

key in (CRM-1, HR-2, HR-3)
This query will return stored in the temporary all issues
field.

https://apps.decadis.net/display/JWTSDC/Issue+list+mode
https://apps.decadis.net/display/JWTSDC/Post+functions
https://apps.decadis.net/display/JWTSDC/Automation+actions
https://apps.decadis.net/display/JWTSDC/Data+types
https://apps.decadis.net/display/JWTSDC/JWT+expression+parser+functions
https://apps.decadis.net/display/JWTSDC/Field+codes
https://apps.decadis.net/display/JWTSDC/Temporary+text

Disable JQL syntax pre-checks
When a JQL query is being entered, a syntax pre-check is performed in order to verify that the query is syntactically correct. When field codes are
being used, however, the final query that will be executed is unknown, since it on the of the fields in runtime.depends actual values

In these cases the syntax pre-check is done with values assigned to the fields, which might break the syntax check.speculative

In order to the JQL syntax pre-check simply add to the beginning of the query. inhibit // Those characters will be once the actual JQL removed
query will be executed.

// key in (%{issue.key})

Make sure to read all about working with as they come with many extremely useful .Lists JWT expression parser functions

List functions can also be used in the . The difference is, that the output will be a instead of an .Advanced text mode flat text issue list

The main advantage over the advanced text mode is, that you can use the returned of the issue list as elements Seeds.

JWT offers individual operators that can be used when working with Lists.

Available operators

Function Short description Output

APPEND Combines the elements of two .lists LIST

UNION Returns of two lists. distinct elements LIST

INTERSECT Returns of two lists.common elements LIST

EXCEPT Removes certain elements from a list. LIST

Order of operations

If you use multiple operators in a single expression, they will follow a certain order in which they are processed or a precedence.

OPERATORS PRECEDENCE ASSOCIATIVITY

INTERSECT 1 (highest) Left-to-right

APPEND, , EXCEPT UNION 2 (lowest) Left-to-right

When using the list operators, you have to make sure that both lists that you compare are of the .same type
All operators are , i.e., they can also be written in lower case: and .case insensitive , , append union intersect except
There are available for each type of list, and their behavior is to that of its four equivalent functions exactly equivalent
corresponding operator.

append()
except()
intersect()
union()

This way, you can choose to use or according to your preference. Although operators yield shorter expressions operators functions
and with fewer parentheses, the usage of functions produces a more functional consistent syntax.

https://apps.decadis.net/display/JWTSDC/Lists
https://apps.decadis.net/display/JWTSDC/JWT+expression+parser+functions
https://apps.decadis.net/display/JWTSDC/Advanced+text+mode
https://apps.decadis.net/display/JWTSDC/Seeds
https://apps.decadis.net/display/JWTSDC/APPEND
https://apps.decadis.net/display/JWTSDC/UNION
https://apps.decadis.net/display/JWTSDC/INTERSECT
https://apps.decadis.net/display/JWTSDC/EXCEPT
https://apps.decadis.net/display/JWTSDC/INTERSECT
https://apps.decadis.net/display/JWTSDC/APPEND
https://apps.decadis.net/display/JWTSDC/EXCEPT
https://apps.decadis.net/display/JWTSDC/UNION
https://apps.decadis.net/pages/viewpage.action?pageId=29525226
https://apps.decadis.net/pages/viewpage.action?pageId=29525230
https://apps.decadis.net/pages/viewpage.action?pageId=29525232
https://apps.decadis.net/pages/viewpage.action?pageId=29525228

If you still have questions, feel free to refer to our support team.

https://apps.decadis.net/display/DECADIS/Support

	JQL mode

