
Data types (Jira expressions)

On this page

General Information | | | | | | | Numbers Texts Dates Calendar Date Lists Maps Boolean

General Information

Throughout the documentation we refer to that can be used in . The most commonly use data types are listed below. data types Jira expression Apart
from this list, learn more about data types in Jira expressions in the general documentation.

Data type Description Example

NUMBER This type represents numeric values. 1, 1.1, -1.1, .
1, -.1

NUMBER LIST This type represents a collection of numeric values. The size may vary from 0 to any number of numeric
values. It is used to read the value of a numeric field in a selection of issues. You can also use literals like [1,

. 2, 3]

[1, 2, 3]

TEXT This type represents any kind of text or character string including all kinds of select and multi-select fields. "Hello world"

TEXT LIST This type represents a collection of textstring values. The size may vary from 0 to any number of string
values. It is also used to read the value of a string field in a selection of issues. You can also use literals like [

. "string_A", "string_B", "string_C"]

["string_A",
"string_B",
"string_C"]

BOOLEAN A , or value of or . logical ,boolean true false true

Numbers

NUMBER

All numbers in Jira expressions are double-precision 64-bit IEEE 754 floating points. The usual set of mathematical operations is available.

Strings can be converted to numbers with the function. For example:Number

Number('1') + Number('2') == 3

 Note that if a string cannot be parsed as number, the function returns NaN (Not a Number).

Texts

TEXT

Texts are based on the . JavaScript String object

Currently supported properties and functions are:

Function Output Returned value

length NUMBER The text length

trim() TEXT Removes from beginning and endwhitespaces

toLowerCase() TEXT Returns the same string with all characters in lowercase

toUpperCase() TEXT Returns the same string with all characters in uppercase

split(string?) TEXT LIST Splits the string with the given separator

https://developer.atlassian.com/cloud/jira/platform/jira-expressions/#introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

replace(string,
string|string => string)

TEXT Replaces all occurrences of the first argument with the second argument, which can
also be a function that accepts the matched part

match(string) TEXT LIST Finds of the given regular expression in this stringall matches

includes(string) BOOLEAN Returns if this string contains the given string, otherwise true false

indexOf(string) NUMBER Returns the of the of the given string in this string, or -1index first occurrence

slice(number, number?) TEXT Returns a of this string, according to the given argumentssubstring

Rich text

This object represents fields with rich text formatting. Currently it allows to retrieve only plain text, but in the future it will also contain Atlassian
.Document Format

plainText : The plain text stored in the field ().TEXT

To access such a property you can easily call it by using an expression like:

issue.description.plainText

Dates

DATE

This object is based on the . JavaScript Date API

Read more about dates and times in Jira expressions in . the general documentation

Jira expressions provide these :additional functions

Function Output Returned value

toString() STRING Returns a in the human-readable format, according to the current user's locale and string
timezone

toCalendarDate() CALENDAR DATE Transforms this into a , according to the current user's locale and timezonecalendar date

toCalendarDateUTC() CALENDAR DATE Transforms this into a in the timezonecalendar date UTC

plusMonths(number) DATE Returns a date with the given number of months added

minusMonths(number) DATE Returns a date with the given number of months removed

plusDays(number) DATE Returns a date with the given number of days added

minusDays(number) DATE Returns a date with the given number of days removed

plusHours(number) DATE Returns a date with the given number of hours added

minusHours(number) DATE Returns a date with the given number of hours removed

plusMinutes(number) DATE Returns a date with the given number of minutes added

minusMinutes
(number)

DATE Returns a date with the given number of minutes removed

Constructors

new Date(): Creates a date that represents the current time.
new Date(number): Creates a date based on a number of milliseconds that elapsed since the Unix epoch.
new Date(string): Creates a date based on a string in the ISO 8601 format (for example,). The current 2008-09-15T15:53:00+05:00
user's timezone is used if none is included in the string.

https://developer.atlassian.com/cloud/jira/platform/apis/document/structure
https://developer.atlassian.com/cloud/jira/platform/apis/document/structure
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.atlassian.com/cloud/jira/platform/jira-expressions#date-and-time

1.
2.
3.

Calendar Date

CALENDAR DATE

A time-zone agnostic with the same set of methods, but limited only to year, month, and day. Date

Constructors

new CalendarDate(string): Creates a calendar date based on a string in the format. For example, .yyyy-MM-dd 2018-09-15

Lists

STRING LIST NUMBER LIST

Lists are a basic building block of Jira expressions. By design, the language does not support imperative constructs, so instead of writing loops, you
need to employ the functional style of processing lists with lambda functions.

For example, to return the with contents number of comments longer than 100 characters:

first the comments to their textsmap
then them to leave only those long enoughfilter
and finally get the of the resulting list:length

issue.comments
 .map(c => c.body.plainText)
 .filter(text => text.length > 100)
 .length

You can access individual elements of a list by using an index, e.g. returns the name of the issue.attachments[0].author.displayName
author of the issue's first attachment.

The following properties and functions are available for lists:

Function Output Returned value

length NUMBER Returns the stored in the listnumber of items

map(Any =>
Any)

TEXT LIST Maps all items in the list to the result of the provided function

sort((Any,
Any) =>
Number)

TEXT LIST Returns the by the natural ordering of elements or by the optional comparison functionlist sorted

filter(Any =>
Boolean)

TEXT LIST Leaves only items that do satisfy the given function, that is, for which the given function returns true

every(Any =>
Boolean)

BOOLEAN Checks if all elements in the list the given satisfy predicate

some(Any =>
Boolean)

BOOLEAN Checks if the list contains at least one element that the given satisfies predicate

includes(Any) BOOLEAN Checks if the is stored in the listgiven argument

indexOf(Any) NUMBER Returns the of the item in the list, or -1 index of the first occurrence

slice(Number,
Number?)

TEXT LIST Returns a , with the index starting from the first argument (inclusive), and ending portion of the list
with the second one (exclusive).

The second argument is optional, if not provided, all remaining elements will be returned. Negative
numbers are allowed and mean indexes counted from the end of the list

https://developer.atlassian.com/cloud/jira/platform/jira-expressions-type-reference/#date

flatten() TEXT LIST Flattens a multi-dimensional list

flatMap(Any
=> Any)

TEXT LIST Maps all items in the list and the resultflattens

reduce(Any =>
Any, Any?)

TEXT LIST Aggregates all elements of the list using the function provided in the first argument.

The operation starts from the first element of the list, unless the initial value is provided in the optional
second argument. If the list is empty and no initial value is given, an error will be returned.

Maps

MAP

If the returned property value is a JSON object, it will be converted to a . Map

Static or dynamic member access can be used to retrieve values from a map. For example, is the same as . map.key map['key']
Values can also be accessed using the method. For example, . get() map.get('key')
Both of these methods will return if there is no mapping for the given key. null

To create a new map, write . Object literals are also evaluated to the object. For example, new Map() Map { id: issue.id, summary: issue.
will evaluate to a map with two keys: and .summary } id summary

Apart from static and computed member access, the following methods are available for maps:

get(string): Returns the value mapped to the given key, or (Any). null
set(string, Any): Returns a new map that has all entries from the current map, plus the first argument mapped to the second ().Map
entries(): Returns a list of all entries in this map, each entry returned as a two-element list of key and value (<[, Any]>).List String

Constructors

new Map(): Creates an empty map. Equivalent to . {}

Optional chaining

Accessing properties in a Jira expression may fail, for example, where:

the left-hand side of the operation is . For example, in the expression a.b where the value of is . null a null
the property does not exist.

In expressions where such strict rules are not desired, use the optional chaining operator . This operator behaves in the same way as regular ?.
member access, but with one crucial difference: when accessing the property fails, is returned. null

Examples:

issue.properties?.myProperty?.a?.b—this expression returns if there is no defined in the issue, or if there is no null myProperty
path in the value of the property.a.b

issue?.customfield_10010—this expression returns if the custom field doesn't exist. null

The operator can also be used in combination with computed member access, for example: . issue?.[fieldName]

Boolean

BOOLEAN

There are two boolean values: and . true false

The usual set of logical operators, with behavior following the rules of classical boolean algebra, is available:

Operator Example

conjunction a && b

disjunction a || b

negation !a

https://developer.atlassian.com/cloud/jira/platform/jira-expressions-type-reference/#map
https://developer.atlassian.com/cloud/jira/platform/jira-expressions-type-reference/#list
https://developer.atlassian.com/cloud/jira/platform/jira-expressions-type-reference/#string

	Data types (Jira expressions)

