
Jira expression mode

The parsing mode, unlike the and the , isJira expression General mode Logical mode based on a dom
ain-specific language , not JWT.designed and provided by Atlassian

It can be used to evaluate custom Jira expressions. Jira expressions follow and JavaScript syntax
can be thought as a JavaScript dialect. See the introduction section from the official documentation here
.

JWT for Jira Cloud only uses which cannot be modified by JWT for Jira Cloud!the features provided by Atlassian

Where are Jira expressions used in JWT for Jira Cloud?

Jira expressions can be used in every context. The is available in all post functions provided by Jira Workflow Toolbox for Jira Jira expression mode
Cloud as well as in the and Jira expression condition Jira expression validator.

In order to illustrate with a simple example, the following Jira expression would ensure that an to a Jira user.issue is currently assigned

issue.assignee != null

What is the difference to JWT expressions?

While they might look quite same, it is important to know that and the have nothing in common in the Jira expressions JWT expressions
background.

The equivalent to our former example, using JWT expression field codes would read:

%{issue.assignee} != null

Apparently, one of the differences to Jira expressions is the way the field codes are referenced.

Rule of thumb!

If you spot the syntax is being used in a JWT expression (either the or the). If the sign is missing you are %{...} General mode Logical mode {
likely looking at Jira expressions written in the Jira expression mode.

Another major difference is that you can write your own functions (so-called Arrow functions) in Jira expressions and use complex objects.

 Example expressions

Jira expression Description

issue.issueType.name == "Story"
This example makes sure that the current issue type is a " ".Story

issue.subtasks.map(s => s.key)
This example returns the keys of all sub-tasks of the current issue as a list:

PU-87,PU-98

https://apps.decadis.net/display/JWTCLOUD/General+mode
https://apps.decadis.net/display/JWTCLOUD/Logical+mode
https://developer.atlassian.com/cloud/jira/platform/jira-expressions/#introduction
https://developer.atlassian.com/cloud/jira/platform/jira-expressions/#introduction
https://developer.atlassian.com/cloud/jira/platform/jira-expressions/
https://apps.decadis.net/display/JWTCLOUD/Jira+expression+condition
https://apps.decadis.net/display/JWTCLOUD/Jira+expression+validator
https://apps.decadis.net/display/JWTCLOUD/General+mode
https://apps.decadis.net/display/JWTCLOUD/Logical+mode

issue.subtasks.reduce((result, issue) =>
 result.set(
 issue.status.name,
 (result[issue.status.
name] || 0) + 1),
 new Map())

This example counts sub-tasks of the current issue by their status name and returns
the result as an object:

{
 "To Do": 1,
 "In Progress": 3
}

Additional examples

Field codes

Jira expression Description

issue.priority.name == "Medium"
Issue's must be .priority "Medium"

issue.issueType.name.match('^(Bug|Task)$') != null
Issue must be or " (using a regular expression).type "Bug" "Task

issue.labels.includes("Support")
Check if one of the issue's labels is "Support"

Numbers and dates

Counting elements

You can count elements by adding .length

Jira expression Description

issue.description.plainText.length >= 100
Issue's description must be at least in length.100 characters

issue.comments.length >= 5
Issue must have at least 5 comments.

new Date().getDay() != 1
The current day must not be Monday.

 (see JavaScript reference for)getDay()

Lists

Jira expression Description

https://www.w3schools.com/jsref/jsref_getday.asp

issue.subtasks[0].key
Accessing a specific element of a list: Getting the key of the first sub-
task

issue.subtasks.length
Returns the number of the sub-tasks.

issue.subtasks.map(s => s.status.name)
Getting a list of the status names of the issue's sub-tasks using the
function map

issue.comments.some(com => com.body.plainText.match
('([A-Z][A-Z0-9]+)-\d+') != null)

Issue must have at least one containing an (using comment issue key
a regular expression).

issue.subtasks.some(sub => sub.components.some
(comp => (comp.name == "QA")))

Issue must have at least one with the set.sub-task component "QA"

issue.subtasks
.every(sub => sub.comments
.some(com => com.body.plainText.match('([A-Z][A-Z0-
9]+)-\d+') != null))

Every sub-task of the issue must have at least one comment
containing an (using a regular expression).issue key

issue.comments
.map(c => c.body.plainText)
.filter(text => text.length > 99)
.length > 0

Issue must have at least with at least .one comment 100 characters

issue.links
.filter(link => link.type.name == "Blocks")
.length == 0

The issue must not have a . link of type Blocks

issue.links
.filter(link => link.linkedIssue.status.name ==
"Done")
.length == issue.links.length

All linked issues must be in the status DONE

issue.links
.filter(link => link.linkedIssue.issueType.name ==
"Bug")
.every(link => link.linkedIssue.resolution != null)

All linked must be .bugs resolved

Why do I need both?

Right now, Jira expressions are the only officially supported way to formulate custom or in Jira Cloud.conditions validators

Being the "brain" of , its and the underlying have Jira Workflow Toolbox for Server and Data Center JWT expression editor expression parser
evolved from a small set of handy functions to a comprehensive list and a fundamental part of this app over the years.

https://apps.decadis.net/display/JWTCLOUD/JWT+expression+editor

Therefore it was only obvious to make this core functionality available for Jira Cloud as well.

JWT for Jira Cloud thus provides two different, powerful means to work with Jira content. In many cases, the functionality is overlapping, e.g. when it
comes to certain field codes and functions. Furthermore they complement each other: For instance, the JWT expression parser provides a function for
getting issues from a JQL query (), which is not provided out of the box by Jira expressions. On the other hand, with Jira expressions issuesFromJQL
you are able to define own functions, which requires basic scripting knowledge, and work with more complex data types.

Choose the appropriate parsing mode depending on your needs and programming skills!

You cannot mix the different modes in a single expression!

Where do I start?

Familiarize yourself with the Jira expression mode. Once you have a general overview make sure to check out the various we have use cases
prepared for you.

To deep-dive into Jira expressions we suggest reading up on the additional information we have prepared for you:

Field codes
Data types (Jira expressions)
Operators (Jira expressions)

What else should I know?

Jira expressions follow certain constraints with regard to the evaluation of those expressions (see the).official documentation

While the limits should be high enough not to interfere with any intended usage, it's important to realize that they do exist:

The Expression length is or .limited to 1,000 characters 100 syntactic elements
Expressions do not support logging or custom error messages. Any non-boolean value will be considered as false.
Expressions can execute a maximum of , i.e. those that load additional data, such as entity properties, 10 so-called "expensive" operations
comments, or custom fields, e.g.
Given an expression to check whether every sub-task has at least one comment containing an issue key, will fail if this issue has more than
10 sub-tasks.

issue.subtasks.every(sub => sub.comments.some(com => com.body.plainText.match('([A-Z][A-Z0-9]+)-\d+') !=
null))

Need additional resources?

The best way would be to start with the official documentation:

Official documentation for Jira expressions: https://developer.atlassian.com/cloud/jira/platform/jira-expressions
Official documentation for Jira expression types: https://developer.atlassian.com/cloud/jira/platform/jira-expressions-type-reference

If you still have questions, feel free to refer to our support team.

https://apps.decadis.net/pages/viewpage.action?pageId=38569752
https://apps.decadis.net/display/JWTCLOUD/Use+cases+for+conditions+and+validators
https://apps.decadis.net/display/JWTCLOUD/Field+codes
https://apps.decadis.net/pages/viewpage.action?pageId=38569680
https://apps.decadis.net/pages/viewpage.action?pageId=38569652
https://developer.atlassian.com/cloud/jira/platform/jira-expressions/#restrictions
https://developer.atlassian.com/cloud/jira/platform/jira-expressions
https://developer.atlassian.com/cloud/jira/platform/jira-expressions-type-reference
https://apps.decadis.net/display/DECADIS/Support

	Jira expression mode

