JWT calendar specification

On this page

Time specifiers | Frame definition | Scope definition | Hierarchy levels | Absolute vs. relative time fames | Absolute | Comments | Examples and
syntax details

A calendar is a system on which JWT will be able to do time calculations. Each calendars should be
composed of at least one time specifier.

Each calendar configuration is highly flexible but the underlying specification must follow a dedicated
syntax.

Time specifiers

A simple time specifier is composed of a time definition or frame and a scope definition in the following format:

<frame> { <scope>; } #e.g. JAN-MAR {08:00 - 12:00;}

Frame definition

Defines the time frame to be included in the specification (e.g. JAN-MAR).

Scope definition

The scope definition further refines a time frame. Multiple time definitions and scopes can be specified and nested based on their hierarchy level.

Each scope needs to be ended with a ";".

Hierarchy levels
Time specifiers are ordered in five hierarchical levels:

. Global
Year
Month
Week
Day

apwn e

A time specifier of a particular level is always explicitly or implicitly contained in a time specifier of the immediately higher level (e.g. a day is
contained in a month).

When the higher level time specifier is not configured (e.g. no month defined) , then it is implicitly contained in an unrestricted higher level time
specifier (e.g. year).

Examples for different levels

Calendar Description

Every day between 8AM and 6PM.

08: 00- 18: 00;
Only during the week, since the week "level" is higher than
MON- FRI { the day level.
#WEEK
08: 00-12: 00, 13: 00-18: 00; #DAY
}
J Only in January, since the year "level" is higher than the
AN week or day level..

MON- FRI
{
H#WEEK

08: 00-12: 00, 13:00-18:
00; #DAY
}
}

Absolute vs. relative time fames
Time specifiers can be classified into two categories:
Absolute

Defines the unique and specific parts of the time continuum. This category of time specifiers represents the ones in the global level.

2020/ 03/ 25 #this is a unique and specific date

Relative

Define parts of the time in the context of other time specifiers. The definition depends on the time specifier where it is contained. This category of time
specifiers is contained in the all levels besides the global.

FRI {
08: 00 - 15:00; #the tinme specifier depends on the "container". In this a day of the week, which is

Friday.
}

Comments

JWT calendars supports single-line comments. Comments begin with a #. e.g.:

#Summer Cal endar

Examples and syntax details

Overview of different levels and priorities

The following table represents all the available time specifiers ordered by level and priority.

Time specifiers each have a dedicated priority. In case that two or more time specifiers overlap in the same level, the one with the highest
priority is applied.

Time specifiers with the same priority in the same level are not allowed to overlap, i.e., the intersection of their time definitions must be empty.

High priority Medium priority Low priority
Level
Global | Date list Date Year list
2020/ 03/ 25, 2020/ AUG 18 2018/ JUN 15- 2018/ SEP/ 15
2017/01/01, 2017/05/01, 2018/ 01/ 01-2018/ 01/ 07, 2018 2000. 200 2010
2017/ 12/ 25- 2017/ 12/ 31 #can / 04/ 10- 2018/ 04/ 20 2000’ 20115’
contain intervals .
2010- 2015, 2018, 2020-2025 #can
contain intervals
Year Month-Day list Month-day Month list
JAN 1, MAY/1, JUL/4, DEC 25 MAR/ 20- MAR/ 25 JAN, MAR, MAY, DEC
AUG 1- AUG 15, NOV/ 5- NOv- 15 JAN- JUN, SEP-DEC #can contain
interval s

MAY, JUL, OCT-DEC

Month Day of month list

1, 15, 30

1-5, 15, 25-3

1, 15-31

25-5 #can contain intervals

Week Day of week list

MON- THU

MON- VEED, FRI

MON, WED, FRI

SAT- MON, VEED #can contain

interval s

Day Whole day Time Empty

00: 00-00: 00; 8: 00-15: 00; ;. #Can be used to exclude dates
8: 00- 15: 00, 16: 00- 19: 00;
21: 00- 3: 00;

Use ; to specify holidays.

Example specifications

Get some inspiration by looking at the example specifications below.

Calendar Description

08: 00- 15: 00, 16: 00- 20: 00: Any date-time with time part between 08:00 and 15:00, or 16:00 and 20:00.

By convention 15:00 and 20:00 (the outer limits of the time frame) are outside of the
calendar definition.

NON- FRI { 08: 00- 15: 00, 16: 00- 20: 00: } Mondays to Fridays from 08:00 to 15:00 and from 16:00 to 20:00.

MON- THU{ 08: 00- 15: 00, 16: 00- 20: 00; } * Mondays to Thursdays from 08:00 to 15:00 and from 16:00 to 20:00.
FRI {08: 00- 15: 00; } * Fridays from 08:00 to 15:00.
Wnter Cal endar * From June 15th to September 15th: Mondays to Fridays from 8:00 to 14:30.
MON - THU { * For the rest of the year, Mondays to Thursdays from 08:00 to 15:00 and from 16:00
08:00 - 15:00, to 20:00. Fridays from 08:00 to 15:00.
16: 00 - 20:00;
}
FR {
08: 00 - 15:00;
}

Summer Cal endar
JUN 15 - SEP/ 15 {
MON - FRI {
08: 00 - 14:30;

. This calendar additionally contains a specification for:
Wnter Cal endar y P

MON - THU { * annual holidays, i.e., holidays that have the same day every year
08:00 - 15:00, * particular holidays per year (2021 in the example).
16: 00 - 20:00;
}
FRI {
08: 00 - 15:00;
}

Summer Cal endar
JUN 15 - SEP/15 {
MON - FRI {
08: 00 - 14:30;

}

Annual Hol i days
JAN' 1, MAY/1, NOV/1, DEC/25 {;}

2021 Hol i days
2021/ JAN/ 12, 2021/ APR/ 13, 2021/ APR
/14, 2021/ NOv/ 23 {;}

NEW Cal endar ef fective 1st This example combines two calendars.

Decenber 2020 A future calendar coming into effect on December 1st of 2021 and the currently valid
calendar.
Wnter Cal endar

MON- THU {
08:30 - 15:30,
16: 00 - 19: 30;

) Since the 2nd calendar is wrapped in a global time specifier with higher priority it is
FRI { the one that is currently valid.

08: 00 - 15:00;
} 2000/ 01/ 01 - 2020/ 11/30 { #gl obal specifier
Surmer Cal endar }
JUN/ 15 - SEP/ 15 {

MON - FRI {

08: 00 - 14:30;

}

}

Annual Hol i days
JAN/ 1, MAY/1, JUL/4, NOV/1, DEC/ 25
{:1}

2021 Hol i days
2021/ 03/ 27 - 2021/03/30, 2021/10/22

{i}
Current calendar valid up to 30th
Novenber 2020

2000/ 01/01 - 2020/ 11/30 {

Wnter Cal endar
MON- THU {
08: 00 - 15:00,
16: 00 - 20:00;

}
FRI {

08:00 - 15:00;
}

Summer Cal endar
JUN 15 - SEP/15 {
MON - FRI {
08: 00 - 14:30;

}

Annual Hol i days
JAN/ 1, MAY/1, NOV/1, DEC/25 {;}
}

2020 Hol i days
2020/ JAN/ 12, 2020/ APR/ 13, 2020/ APR
/14, 2020/ Nov/ 23 {;}

Backus—Naur Syntax Specification

The syntax of the calendar specification follows the Backus-Naur form. Read more about the details.

https://www.w3.org/Notation.html

<schedule> ::= <global_level_specifier> +

<global_level_specifier> ::= <date_interval_list> { <year_level_specifier>* } | <date_list>{ <year_level_specifier>* } | <year_list> { <year_level_spe
cifier>* } | <year_level_specifier>+

<year_level_specifier> ::= <month_day_list> { <month_level_specifier>*} | <month_day_interval_list> { <month_level_specifier>*} | <month_list> {
<month_level_specifier>*} | <month_level_specifier>+

<month_level_specifier> ::= <day_of_month_list> { <week_level_specifier>* } | <week_level_specifier>+
<week_level_specifier> ::= <day_of week_list> { <day_level_specifier>*} | <day_level_specifier>+
<day_level_specifier> ::= <time_interval_list>

<time_interval_list> ::= <time_interval> (, <time_interval>)*; |;

<time_interval> ::= <time_literal> - <time_literal>

<time_literal> examples: 00: 00, 6: 30, 09: 55, 13: 01 and 23: 59.

<date_interval_list> ::= <date_interval> (, <date_interval>)*

<date_list> ::= (<date_literal> | <date_interval>) (, (<date_literal> | <date_interval>))*
<date_interval> ::= <date_literal> - <date_literal>

<date_literal> examples: 2017/ 06/ 27,2017/ JUN 27,2018/ 01/ 01 and 2020/ MAR/ 2.
<year_list> ;= (<year> | <year_interval>) (, (<year> | <year_interval>))*

<year_interval> ::= <year> - <year>

<year> examples: 1991, 2000 and 2017.

<month_day_list> ::= <month_day> (, <month_day>)*

<month_day_interval_list> ::= <month_day_interval> (, <month_day_interval>)*
<month_day_interval> ::= <month_day> - <month_day>

<month_day> ::= <month>/ <day_of_month>
examples: JAN 1, MAR/ 02, AUG 18 and DEC/ 25.

<month_list> ::= (<month> | <month_interval>) (, (<month> | <month_interval>))*

<month> = JAN| FEB | MAR | APR | MAY | JUN | JUL | AUG| SEP | OCT | NOV | DEC

<day_of_month_list> ::= (<day_of_month> | <day_of_month_interval>) (, (<day_of_month> | <day_of _month_interval>))*
<day_of_month_interval> ::= <day_of_month> - <day_of_month>

<day_of_week_list> ::= (<day_of_week> | <day_of week_interval>) (, (<day_of_week> | <day_of week_interval>))*

<day_of_week> ::= MON| TUE | VED | THU| FRI | SAT | SUN

If you still have questions, feel free to refer to our support team.

https://apps.decadis.net/display/DECADIS/Support

	JWT calendar specification

