
Seeds

On this page

Seed issues | | Seed texts Seed numbers

Probably most of the time, doing things with the help of JWT is related to a - the single object issue
currently being , e.g. by adding a comment, updating a field, sending an email, etc.transitioned

Referring to the can be done by using a simple field code like current issue's information %{issue.
.}description

However, since you can also use more complex functions in JWT that work with , this multiple objects
simple notation is not sufficient for those use cases. To name a few examples

Creating sub-tasks based on the (dynamic) of components set in the current issueselection
Create a task for returned by a JQL query (dynamic)each issue
Create a set of (static) in an Epic with distinct pieces of informationthree stories

Whenever Jira Workflow Toolbox has to handle (or over) multiple elements of (or iterates Lists
sources), those elements are referred to as . Depending on the type of list, those are referred to seeds
as

Seed issues - for elements of issue lists
Seed texts - for elements of (e.g. custom field options, components etc.)text lists
Seed numbers - for elements of number lists

Seed issues

Issue lists can be specified by , , or (in some post functions or automation actions) by JQL queries issue list expressions predefined
, e.g. Issues under Epic.selections

When dealing with issue lists, the notation for accessing values of each element is , e.g. %{ . }seed.issue someField %{ .seed.issue summa
}ry

Workflow functions and automation actions

You might face seed issues when trying to create/update/transition multiple issues.

Create issue post function
Create issue action

Number of issues to be created Mode Description

Multiple issues JQL An issue is created for every issue returned by the JQL query.

Multiple issues Issue list An issue is created for every issue returned by the issue list expression.

Example: You want to create multiple issue based on a a custom JQL that returns three issues:

DEMO-1 Issue A
DEMO-2 Issue B
DEMO-3 Issue C

https://apps.decadis.net/display/JWTSDC/Lists
https://apps.decadis.net/display/JWTSDC/Create+issue
https://apps.decadis.net/display/JWTSDC/Create+issue+action

Creating issues based on this JQL query, the post function will run times, where the following values will be returned throughout those three runsthree

Run %{seed.issue.key} %{seed.issue.summary}

1 DEMO-1 Issue A

2 DEMO-2 Issue B

3 DEMO-3 Issue C

In general, using the seed notation, the returns the field values of the from this list.nth run nth issue

When choosing the , e.g. with an expression like , the behavior is the same.Issue list mode linkedIssues()

Further workflow functions and automation actions using seed issues

Transition issues post function
Update or copy field values post function
Condition on a list of issue keys or Validation on a list of issue keys
Condition on linked issues or Validation of linked issues
Condition on sub-tasks or Validation of sub-tasks

Seed texts

Text lists can either be

static, e.g. , or["firstElement", "secondElement", "thirdElement"]
composed dynamically by using the expression parser functions, e.g. or toStringList() toStringList(%{ . })issue components toStri

 (where the custom field with the ID 123456 is a multi option custom field) orngList(%{ . }})issue cf12345
calculated by using one of the functions that return a text list like , etc., e.g. fieldHistory() groupsUserBelongsTo() fieldHistory(%{ .issue

 or }})summary groupsUserBelongsTo(%{ . }})system currentUser

When dealing with text lists, the notation for each element .%{ }seed.text

Workflow functions and automation actions

Create issue post function

Number of
issues to be
created

Mode Description

Multiple issues Text list An issue is created for each element of a text list.

Given the example of a static list above, and the following values will be returned throughout those three runsthe post function will run three times

Run %{seed.text}

1 firstElement

2 secondElement

3 thirdElement

Given a dynamic example, having selected the components Frontend and Backend on an issue, the post function will run two times returning the
following values for each run

Run %{seed.text}

1 Frontend

2 Backend

After adding a third component Interface, the post function will run three times returning the following values for each run

https://apps.decadis.net/display/JWTSDC/Issue+list+mode
https://apps.decadis.net/pages/viewpage.action?pageId=29525899
https://apps.decadis.net/display/JWT/Transition+issues
https://apps.decadis.net/display/JWTSDC/Update+or+copy+field+values
https://apps.decadis.net/display/JWTSDC/Condition+on+a+list+of+issue+keys
https://apps.decadis.net/display/JWTSDC/Validation+on+a+list+of+issue+keys
https://apps.decadis.net/display/JWTSDC/Condition+on+linked+issues
https://apps.decadis.net/display/JWTSDC/Validation+of+linked+issues
https://apps.decadis.net/display/JWTSDC/Condition+on+sub-tasks
https://apps.decadis.net/display/JWTSDC/Validation+of+sub-tasks
https://apps.decadis.net/pages/viewpage.action?pageId=32212044
https://apps.decadis.net/pages/viewpage.action?pageId=29527638
https://apps.decadis.net/pages/viewpage.action?pageId=29526320
https://apps.decadis.net/display/JWTSDC/Create+issue

Run %{seed.text}

1 Frontend

2 Backend

3 Interface

According to this scenario, composing a summary with an expression like

"Summary of " + %{seed.text} + " Issue"

will result in issues, namedthree

Summary of Frontend Issue
Summary of Backend Issue
Summary of Interface Issue

Expression parser functions

List functions like or mathOnStringList() textOnStringList()

Examples

Create a sub-task for each component

Seed numbers

Number lists can either be

static, e.g. , or[1, 2, 3]
composed dynamically by using the expression parser function ortoNumberList()
calculated by using one of the functions that return a number list like , , etc., e.g. releaseDates() timesOfTransition() releaseDates(%{issue

 or . })fixVersions timesOfTransition("Done","Open"})

When dealing with number lists, the notation for each element is .{ }seed.number

Workflow functions and automation actions

Create issue post function or
Create issue action

Number of issues to be created Mode Description

Multiple issues Numeric mode The number of issues provided by the numeric value is created.

Given a static example with the numeric value of in order to create three issues, the following values will be returned for each run3

Run {seed.number}

1 1

2 2

3 3

The number is interpreted as a number list .3 [1, 2, 3]

According to this scenario, composing a summary with an expression like

https://apps.decadis.net/display/JWTSDC/Lists
https://apps.decadis.net/pages/viewpage.action?pageId=32212532
https://apps.decadis.net/pages/viewpage.action?pageId=32212528
https://apps.decadis.net/display/JWTSDC/Create+a+sub-task+for+each+component
https://apps.decadis.net/pages/viewpage.action?pageId=32212046
https://apps.decadis.net/pages/viewpage.action?pageId=29526228
https://apps.decadis.net/pages/viewpage.action?pageId=29527416
https://apps.decadis.net/display/JWTSDC/Create+issue
https://apps.decadis.net/display/JWTSDC/Create+issue+action

"Summary of Issue # " + {seed.number}

will result in three issues, named

Summary of Issue # 1
Summary of Issue # 2
Summary of Issue # 3

Expression parser functions

List functions like mathOnNumberList() or textOnNumberList()

If you still have questions, feel free to refer to our support team.

https://apps.decadis.net/display/JWTSDC/Lists
https://apps.decadis.net/pages/viewpage.action?pageId=29525265
https://apps.decadis.net/pages/viewpage.action?pageId=29525263
https://apps.decadis.net/display/DECADIS/Support

	Seeds

