
Seeds

On this page

Seed issues | | Seed texts Seed numbers

Probably most of the time, doing things with the help of JWT for Jira Cloud is related to a single object
- the currently being , e.g. by adding a comment, updating a field, etc.issue transitioned

Referring to the can be done by using a simple field code like current issue's information %{issue.
.}description

However, since you can also use more complex functions in JWT that work with , this multiple objects
simple notation is not sufficient for those use cases. To name a few examples

Creating sub-tasks based on the (dynamic) of components set in the current issueselection
Create a task for returned by a JQL query (dynamic)each issue
Create a set of (static) in an Epic with distinct pieces of informationthree stories

Whenever JWT for Jira Cloud has to handle (or over) multiple elements of (or sources), iterates Lists
those elements are referred to as . Depending on the type of list, those are referred to as seeds

Seed issues - for elements of issue lists
Seed texts - for elements of (e.g. custom field options, components etc.)text lists
Seed numbers - for the numbers from one to a given number

Seed issues

Issue lists can be specified by .issue list expressions like linkedIssues()

When dealing with issue lists, the notation for accessing values of each element is , e.g. %{ . }seed.issue someField %{ .seed.issue summa
}ry

Workflow functions

You might face seed issues when trying to create multiple issues with the Create issue post function by setting the "Mode" parameter:

Number of issues to be created Description

Multiple issues based on an issue list An issue is created for every issue returned by the issue list expression.

Example: You want to create multiple issue based on a parser function that returns three issues, e.g. :linkedIssues()

DEMO-1 Issue A
DEMO-2 Issue B
DEMO-3 Issue C

Creating issues based on this result, the post function will run times, where the following values will be returned throughout those three runs. three

Run %{seed.issue.key} %{seed.issue.summary}

1 DEMO-1 Issue A

https://apps.decadis.net/display/JWTCLOUD/Lists
https://apps.decadis.net/pages/viewpage.action?pageId=38569751
https://apps.decadis.net/display/JWTCLOUD/Create+issue
https://apps.decadis.net/pages/viewpage.action?pageId=38569751

2 DEMO-2 Issue B

3 DEMO-3 Issue C

In general, using the seed notation, the returns the field values of the from this list.nth run nth issue

Seed texts

Text lists can either be

static, e.g. , or["firstElement", "secondElement", "thirdElement"]
composed dynamically by using the expression parser functions, e.g. or toStringList() toStringList(%{ . })issue components toStri

 (where the custom field with the ID 123456 is a multi option custom field) orngList(%{ . }})issue cf12345
calculated by using one of the functions that return a text list like , e.g. %{findPattern() findPattern(%{issue.versions},
"Release")}

When dealing with text lists, the notation for each element .%{ }seed.text

Workflow functions

Create issue post function

Number of issues to be created Description

Multiple issues based on a text list An issue is created for each element of a text list.

Given the example of a static list above, and the following values will be returned throughout those three runsthe post function will run three times

Run %{seed.text}

1 firstElement

2 secondElement

3 thirdElement

Given a dynamic example, having selected the components Frontend and Backend on an issue with , %{toStringList(%{issue.components})}
the post function will run two times returning the following values for each run

Run %{seed.text}

1 Frontend

2 Backend

After adding a third component Interface, the post function will run three times returning the following values for each run

Run %{seed.text}

1 Frontend

2 Backend

3 Interface

According to this scenario, composing a summary with an expression like

Summary of %{seed.text} Issue

will result in issues, namedthree

Summary of Frontend Issue

https://apps.decadis.net/pages/viewpage.action?pageId=38569704
https://apps.decadis.net/pages/viewpage.action?pageId=38569784
https://apps.decadis.net/display/JWTSDC/Create+issue

Summary of Backend Issue
Summary of Interface Issue

Examples

Create a sub-task for each component

Seed numbers

Numbers can either be

static, e.g. , or3
composed dynamically by using the expression parser function ortoNumber()
calculated by using one of the functions that return a number like , e.g. length() %{length(%{issue.versions})}

When dealing with number lists, the notation for each element is .{ }seed.number

Workflow functions

Create issue post function

Number of issues to be created Description

Multiple issues based on a number The number of issues provided by the numeric value is created.

Given a static example with the numeric value of in order to create three issues, the following values will be returned for each run3

Run {seed.number}

1 1

2 2

3 3

According to this scenario, composing a summary with an expression like

Summary of Issue # {seed.number}

will result in three issues, named

Summary of Issue # 1
Summary of Issue # 2
Summary of Issue # 3

If you still have questions, feel free to refer to our support team.

https://apps.decadis.net/display/JWTCLOUD/Create+a+sub-task+for+each+component
https://apps.decadis.net/pages/viewpage.action?pageId=38569708
https://apps.decadis.net/pages/viewpage.action?pageId=38569764
https://apps.decadis.net/display/JWTSDC/Create+issue
https://apps.decadis.net/display/DECADIS/Support

	Seeds

